A332785 Nonsquarefree numbers that are not squareful.
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 204, 207, 208, 212, 220, 224
Offset: 1
Examples
18 = 2 * 3^2 is nonsquarefree as it is divisible by the square 3^2, but it is not squareful because 2 divides 18 but 2^2 does not divide 18, hence 18 is a term. 72 = 2^3 * 3^2 is nonsquarefree as it is divisible by the square 3^2, but it is also squareful because primes 2 and 3 divide 72, and 2^2 and 3^2 divide also 72, so 72 is not a term.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Rafael Jakimczuk, Powerful Numbers Multiple of a Set of Primes and Hybrid Numbers, 2019.
Crossrefs
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(n)[2][..,2]; max(F) > 1 and min(F) = 1 end proc: select(filter, [$1..1000]); # Robert Israel, Sep 15 2024
-
Mathematica
Select[Range[225], Max[(e = FactorInteger[#][[;;,2]])] > 1 && Min[e] == 1 &] (* Amiram Eldar, Feb 24 2020 *)
-
PARI
isok(m) = !issquarefree(m) && !ispowerful(m); \\ Michel Marcus, Feb 24 2020
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A332785(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, l, j = n-1+squarefreepi(integer_nthroot(x,3)[0])+squarefreepi(x), 0, isqrt(x) while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c += j*(w-l) l, j = w, isqrt(x//k2**3) return c-l return bisection(f,n,n) # Chai Wah Wu, Sep 14 2024
Formula
Sum_{n>=1} 1/a(n)^s = 1 + zeta(s) - zeta(s)/zeta(2*s) - zeta(2*s)*zeta(3*s)/zeta(6*s), s > 1. - Amiram Eldar, Sep 17 2023
Comments