cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332817 a(n) = A108548(A163511(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 6, 5, 16, 27, 18, 25, 12, 15, 10, 7, 32, 81, 54, 125, 36, 75, 50, 49, 24, 45, 30, 35, 20, 21, 14, 13, 64, 243, 162, 625, 108, 375, 250, 343, 72, 225, 150, 245, 100, 147, 98, 169, 48, 135, 90, 175, 60, 105, 70, 91, 40, 63, 42, 65, 28, 39, 26, 11, 128, 729, 486, 3125, 324, 1875, 1250, 2401, 216, 1125, 750, 1715, 500
Offset: 0

Views

Author

Antti Karttunen, Mar 05 2020

Keywords

Comments

This irregular table can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A332818 to the parent:
1
|
...................2...................
4 3
8......../ \........9 6......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 27 18 25 12 15 10 7
32 81 54 125 36 75 50 49 24 45 30 35 20 21 14 13
etc.
This is the mirror image of the tree in A332815.

Crossrefs

Cf. A332811 (inverse permutation).
Cf. A054429, A108548, A163511, A332815 (mirror image).
Cf. A108546 (the right edge of the tree from 2 downward).
Cf. also A332214.

Programs

  • PARI
    up_to = 26927;
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A054429(n) = ((3<<#binary(n\2))-n-1); \\ From A054429
    A163511(n) = if(!n,1,A005940(1+A054429(n)));
    A108546list(up_to) = { my(v=vector(up_to), p,q); v[1] = 2; v[2] = 3; v[3] = 5; for(n=4,up_to, p = v[n-2]; q = nextprime(1+p); while(q%4 != p%4, q=nextprime(1+q)); v[n] = q); (v); };
    v108546 = A108546list(up_to);
    A108546(n) = v108546[n]; \\ Antti Karttunen, Mar 05 2020
    A108548(n) = { my(f=factor(n)); f[,1] = apply(A108546,apply(primepi,f[,1])); factorback(f); };
    A332817(n) = A108548(A163511(n));

Formula

a(n) = A108548(A163511(n)).
For n >= 1, a(n) = A332815(A054429(n)).