cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332824 a(n) = Product_{d|n} A019565(phi(d)), where phi is Euler totient function A000010.

Original entry on oeis.org

2, 4, 6, 12, 10, 36, 30, 60, 90, 100, 42, 540, 70, 900, 210, 420, 22, 8100, 66, 2100, 3150, 1764, 330, 18900, 550, 4900, 2970, 94500, 770, 44100, 2310, 4620, 6930, 484, 11550, 4252500, 130, 4356, 16170, 115500, 182, 9922500, 546, 291060, 242550, 108900, 2730, 1455300, 8190, 302500, 858, 1131900, 1430, 8820900, 19110
Offset: 1

Views

Author

Antti Karttunen, Feb 25 2020

Keywords

Crossrefs

Cf. A048675 (a left inverse).

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A332824(n) = { my(m=1); fordiv(n,d,m *= A019565(eulerphi(d))); (m); };

Formula

a(n) = Product_{d|n} A332825(d).
a(n) = A318834(n) * A332825(n).
A048675(a(n)) = n.
A097248(a(n)) = A019565(n).

A332827 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = A003557(A332824(n)) for all other numbers, except f(1) = 0.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 2, 5, 6, 3, 7, 3, 8, 3, 2, 3, 9, 3, 6, 10, 11, 3, 12, 13, 14, 15, 16, 3, 17, 3, 2, 5, 18, 13, 19, 3, 20, 21, 22, 3, 23, 3, 24, 25, 26, 3, 27, 5, 28, 3, 29, 3, 30, 21, 31, 5, 32, 3, 33, 3, 34, 35, 2, 13, 36, 3, 18, 10, 37, 3, 38, 3, 39, 40, 41, 25, 42, 3, 43, 44, 45, 3, 46, 3, 47, 48, 49, 3, 50, 40, 51, 52, 53, 3, 54, 3, 55, 56, 57, 3, 58, 3, 59, 60
Offset: 1

Views

Author

Antti Karttunen, Feb 25 2020

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A332824(n) = { my(m=1); fordiv(n,d,m *= A019565(eulerphi(d))); (m); };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    Aux332827(n) = if(1==n,0,A003557(A332824(n)));
    v332827 = rgs_transform(vector(up_to,n,Aux332827(n)));
    A332827(n) = v332827[n];
Showing 1-2 of 2 results.