A332829 Number of compositions of n such that the difference between adjacent parts is at least two.
1, 1, 1, 1, 3, 4, 6, 9, 15, 23, 36, 55, 87, 136, 212, 329, 515, 802, 1251, 1949, 3043, 4745, 7401, 11535, 17994, 28063, 43766, 68243, 106433, 165981, 258854, 403670, 629530, 981750, 1531055, 2387660, 3723569, 5806905, 9055889, 14122638, 22024291, 34346886
Offset: 0
Keywords
Examples
a(4) = 3: 13, 31, 4. a(5) = 4: 131, 14, 41, 5. a(6) = 6: 141, 24, 42, 15, 51, 6. a(7) = 9: 313, 142, 241, 151, 25, 52, 16, 61, 7. a(8) = 15: 1313, 3131, 242, 314, 413, 152, 251, 35, 53, 161, 26, 62, 17, 71, 8. a(9) = 23: 13131, 1314, 1413, 3141, 4131, 414, 252, 135, 153, 315, 351, 513, 531, 162, 261, 36, 63, 171, 27, 72, 18, 81, 9.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1750
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(abs (i-j)<2, 0, b(n-j, `if`(n<2*j-1, -1, j))), j=1..n)) end: a:= n-> b(n, -1): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[Abs[i - j] < 2, 0, b[n - j, If[n < 2*j - 1, -1, j]]], {j, 1, n}]]; a[n_] := b[n, -1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 13 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n, where d = 1.55950091106966174000570854045613844480247532446123619115121795622156266..., c = 0.42021981384104890468461570042297109905705539874851026797544718780579866... - Vaclav Kotesovec, Feb 28 2020