cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A333494 a(1) = 1; a(n) = Sum_{k=1..n-1} ceiling(n/k) * a(k).

Original entry on oeis.org

1, 2, 7, 22, 69, 208, 634, 1903, 5734, 17210, 51702, 155107, 465561, 1396684, 4190689, 12572144, 37718360, 113155081, 339471195, 1018413586, 3055258062, 9165774828, 27497376189, 82492128568, 247476542954, 742429628932, 2227289352360, 6681868062822, 20045605585809
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[Ceiling[n/k] a[k], {k, 1, n - 1}]; Table[a[n], {n, 1, 29}]
    terms = 29; A[] = 0; Do[A[x] = x (1 + (1/(1 - x)) (A[x] + Sum[A[x^k], {k, 1, terms}])) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 - x)) * (A(x) + Sum_{k>=1} A(x^k))).
a(n) ~ c * 3^n, where c = 0.292080665386646518390576592052254840432101999262173908555857806023213143845... - Vaclav Kotesovec, Mar 25 2020
Showing 1-1 of 1 results.