cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332861 Primes p with the property that if q

Original entry on oeis.org

2, 3, 7, 13, 23, 31, 41, 79, 101, 107, 149, 163, 173, 191, 197, 269, 271, 293, 347, 419, 443, 523, 557, 647, 761, 769, 787, 1013, 1153, 1373, 1613, 1619, 1669, 1693, 1777, 1783, 1873, 2153, 2161, 2207, 2399, 2447, 2801, 2939, 2999, 3011, 3049, 3253, 3319, 3413
Offset: 1

Views

Author

David James Sycamore, Feb 27 2020

Keywords

Examples

			Prime 13 is a member, because the minimal primes in partitions of 13 into prime parts smaller than 13 occur at least twice: [2,2,2,2,2,3], [2,2,3,3,3], [2,2,2,2,5], [2,3,3,5], [2,2,2,7], [2,11], [3,3,7], [3,5,5]; 3 occurs twice, 2 occurs 6 times.
Prime 11 is not a member, because 3 occurs only once as a minimal prime in partitions of 11 into smaller primes: [2,2,2,2,3], [2,3,3,3], [2,2,2,5], [2,2,7], [3,3,5].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, p, t) option remember; `if`(n=0, 1, `if`(p>n, 0, (q->
          add(b(n-p*j, q, 1), j=1..n/p)*t^p+b(n, q, t))(nextprime(p))))
        end:
    a:= proc(n) option remember; local p; p:= a(n-1); do
          p:= nextprime(p); if (f-> andmap(i-> coeff(f, x, i)
              <>1, [$2..p-1]))(b(p, 2, x)) then return p fi od
        end: a(1):=2:
    seq(a(n), n=1..33);  # Alois P. Heinz, Mar 13 2020
  • Mathematica
    b[n_, p_, t_] := b[n, p, t] = If[n == 0, 1, If[p > n, 0, With[{q = NextPrime[p]}, Sum[b[n - p j, q, 1], {j, 1, n/p}] t^p + b[n, q, t]]]];
    a[n_] := a[n] = Module[{p = a[n - 1]}, While[True, p = NextPrime[p]; If[AllTrue[Range[2, p-1], SeriesCoefficient[b[p, 2, x], {x, 0, #}] != 1&], Return [p]]]];
    a[1] = 2;
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 33}] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)

Extensions

a(13)-a(50) from Alois P. Heinz, Feb 28 2020