cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332898 a(1) = 0, and for n > 1, a(n) = a(A332893(n)) + [n == 3 (mod 4)].

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 0, 1, 3, 1, 2, 2, 2, 0, 3, 0, 4, 1, 1, 3, 5, 1, 0, 2, 1, 2, 4, 2, 6, 0, 2, 3, 3, 0, 5, 4, 3, 1, 6, 1, 7, 3, 1, 5, 8, 1, 0, 0, 4, 2, 7, 1, 4, 2, 3, 4, 9, 2, 8, 6, 2, 0, 1, 2, 10, 3, 4, 3, 11, 0, 9, 5, 1, 4, 1, 3, 12, 1, 0, 6, 13, 1, 2, 7, 5, 3, 10, 1, 4, 5, 5, 8, 5, 1, 11, 0, 3, 0, 12, 4, 14, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 04 2020

Keywords

Comments

Starting from x=n, iterate the map x -> A332893(x) which divides even numbers by 2, and for odd n, changes every 4k+1 prime in the prime factorization to 4k+3 prime and vice versa (except 3 --> 2), like in A332819. a(n) counts the numbers of the form 4k+3 encountered until 1 has been reached. The count includes also n itself if it is of the form 4k+3 (A004767).
In other words, locate the node which contains n in binary tree A332815 and traverse from that node towards the root, counting all numbers of the form 4k+3 that occur on the path.

Crossrefs

Cf. A028982 (positions of zeros).
Cf. also A292377.

Programs

Formula

a(1) = 0, and for n > 1, a(n) = a(A332893(n)) + [n == 3 (mod 4)].
a(n) = A000120(A332896(n)).