cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332904 Sum of distinct integers encountered on all possible paths from n to 1 when iterating with nondeterministic map k -> k - k/p, where p is any of the prime factors of k.

Original entry on oeis.org

1, 3, 6, 7, 12, 16, 23, 15, 25, 30, 41, 36, 49, 57, 66, 31, 48, 63, 82, 66, 105, 99, 122, 76, 91, 115, 90, 125, 154, 156, 187, 63, 222, 114, 240, 139, 176, 196, 217, 138, 179, 251, 294, 215, 264, 284, 331, 156, 300, 213, 258, 247, 300, 220, 345, 261, 334, 348, 407, 336, 397, 429, 395, 127, 492, 512, 579, 246, 650, 546, 617, 291, 364
Offset: 1

Views

Author

Antti Karttunen, Apr 04 2020

Keywords

Examples

			a(12): we have three alternative paths: {12, 8, 4, 2, 1}, {12, 6, 4, 2, 1} or {12, 6, 3, 2, 1}, with numbers [1, 2, 3, 4, 6, 8, 12] present, therefore a(12) = 1+2+3+4+6+8+12 = 36.
For n=15 we have five alternative paths from 15 to 1: {15, 10, 5, 4, 2, 1}, {15, 10, 8, 4, 2, 1}, {15, 12, 8, 4, 2, 1},  {15, 12, 6, 4, 2, 1},  {15, 12, 6, 3, 2, 1}. These form a lattice illustrated below:
        15
       / \
      /   \
    10     12
    / \   / \
   /   \ /   \
  5     8     6
   \__  |  __/|
      \_|_/   |
        4     3
         \   /
          \ /
           2
           |
           1,
therefore a(15) = 1+2+3+4+5+6+8+10+12+15 = 66.
		

Crossrefs

Cf. A333790 (sum of the route with minimal sum), A333794.

Programs

  • Mathematica
    Total /@ Nest[Function[{a, n}, Append[a, Union@ Flatten@ Table[Append[a[[n - n/p]], n], {p, FactorInteger[n][[All, 1]]}]]] @@ {#, Length@ # + 1} &, {{1}}, 72] (* Michael De Vlieger, Apr 15 2020 *)
  • PARI
    up_to = 20000;
    A332904list(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); apply(vecsum,v); }
    v332904 = A332904list(up_to);
    A332904(n) = v332904[n];

Formula

For all primes p, a(p) = a(p-1) + p.
For all n >= 1, A333000(n) >= a(n) >= A333794(n) >= A333790(n).