A332942 Number of entries in the second blocks of all set partitions of [n] when blocks are ordered by increasing lengths.
1, 7, 25, 101, 366, 1555, 7099, 34627, 184033, 1059972, 6425992, 41266681, 280938451, 2009636335, 15025372685, 117386912433, 956458929950, 8104399834719, 71244441818927, 648761935841876, 6110827367541999, 59454153443971106, 596654820386392152
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..576
- Wikipedia, Partition of a set
Crossrefs
Column k=2 of A319298.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0, add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i))) end: a:= n-> b(n, 1, 2)[2]: seq(a(n), n=2..24);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, 0 {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]]; a[n_] := b[n, 1, 2][[2]]; a /@ Range[2, 24] (* Jean-François Alcover, Jan 06 2021, after Alois P. Heinz *)