A332958 Number of labeled forests with 2n nodes consisting of n-1 isolated nodes and a labeled tree with n+1 nodes.
1, 12, 240, 7000, 272160, 13311144, 787218432, 54717165360, 4375800000000, 396040894180360, 40038615905992704, 4473490414613093328, 547532797546896179200, 72869747140722656250000, 10478808079059531910348800, 1619337754490833097114916960
Offset: 1
Examples
a(1) = 1. The forest is the tree of 2 nodes. It can be depicted by 1--2. a(2) = 12. Given 4 nodes we can choose 1 of them in C(4,1) = 4 ways. For each of these 4 ways there are A000272(n+1) = (n+1)^(n-1) = 3 trees to complete the forest. The 12 forests can be represented by: 1 3-2-4, 1 2-3-4, 1 2-4-3, 2 3-1-4, 2 1-3-4, 2 1-4-3, 3 2-1-4, 3 1-2-4, 3 1-4-2, 4 2-1-3, 4 1-2-3, 4 1-3-2.
Programs
-
Mathematica
a[n_] := Binomial[2n, n-1] * (n+1)^(n-1); Array[a,18] (* Amiram Eldar, Apr 12 2020 *)
-
PARI
a(n) = binomial(2*n,n-1) * (n+1)^(n-1);
Comments