cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A332790 Triangle read by rows: T(n,k) = 1 + 2*n + k + 5*k(n-k) for n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 3, 4, 5, 11, 7, 7, 18, 19, 10, 9, 25, 31, 27, 13, 11, 32, 43, 44, 35, 16, 13, 39, 55, 61, 57, 43, 19, 15, 46, 67, 78, 79, 70, 51, 22, 17, 53, 79, 95, 101, 97, 83, 59, 25, 19, 60, 91, 112, 123, 124, 115, 96, 67, 28, 21, 67, 103, 129, 145, 151, 147, 133, 109, 75, 31
Offset: 0

Views

Author

Philip K Hotchkiss, Mar 04 2020

Keywords

Examples

			From _Jon E. Schoenfield_, Mar 14 2020: (Start)
.
  n\k|  0    1    2    3    4    5    6    7    8    9   10
  ---+-----------------------------------------------------
   0 |  1
   1 |  3    4
   2 |  5   11    7
   3 |  7   18   19   10
   4 |  9   25   31   27   13
   5 | 11   32   43   44   35   16
   6 | 13   39   55   61   57   43   19
   7 | 15   46   67   78   79   70   51   22
   8 | 17   53   79   95  101   97   83   59   25
   9 | 19   60   91  112  123  124  115   96   67   28
  10 | 21   67  103  129  145  151  147  133  109   75   31
  ...
(End)
		

Crossrefs

Programs

  • Maple
    :=proc(n, k)
       if n<0 or k<0 or k>n then
           0;
       else
           1+2*n+k+5*k*(n-k);
       end if;
  • Mathematica
    T[n_, k_]:=1+2*n+k+5*k*(n-k); Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten

Formula

T(n,k) = 1 + 2*n + k + 5*k*(n-k), n >= 0, 0 <= k <= n.
Showing 1-1 of 1 results.