A332790 Triangle read by rows: T(n,k) = 1 + 2*n + k + 5*k(n-k) for n >= 0, 0 <= k <= n.
1, 3, 4, 5, 11, 7, 7, 18, 19, 10, 9, 25, 31, 27, 13, 11, 32, 43, 44, 35, 16, 13, 39, 55, 61, 57, 43, 19, 15, 46, 67, 78, 79, 70, 51, 22, 17, 53, 79, 95, 101, 97, 83, 59, 25, 19, 60, 91, 112, 123, 124, 115, 96, 67, 28, 21, 67, 103, 129, 145, 151, 147, 133, 109, 75, 31
Offset: 0
Examples
From _Jon E. Schoenfield_, Mar 14 2020: (Start) . n\k| 0 1 2 3 4 5 6 7 8 9 10 ---+----------------------------------------------------- 0 | 1 1 | 3 4 2 | 5 11 7 3 | 7 18 19 10 4 | 9 25 31 27 13 5 | 11 32 43 44 35 16 6 | 13 39 55 61 57 43 19 7 | 15 46 67 78 79 70 51 22 8 | 17 53 79 95 101 97 83 59 25 9 | 19 60 91 112 123 124 115 96 67 28 10 | 21 67 103 129 145 151 147 133 109 75 31 ... (End)
Links
- Philip K. Hotchkiss, Generalized Rascal Triangles, arXiv:1907.11159 [math.HO], 2019, Figure 8 p. 3.
Programs
-
Maple
:=proc(n, k) if n<0 or k<0 or k>n then 0; else 1+2*n+k+5*k*(n-k); end if;
-
Mathematica
T[n_, k_]:=1+2*n+k+5*k*(n-k); Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
Formula
T(n,k) = 1 + 2*n + k + 5*k*(n-k), n >= 0, 0 <= k <= n.