A332977 Triangle T(n,k) read by rows in which n-th row lists in increasing order all integers m satisfying Omega(m) + pi(gpf(m)) - [m<>1] = n; n>=0, 1<=k<=A011782(n).
1, 2, 3, 4, 5, 6, 8, 9, 7, 10, 12, 15, 16, 18, 25, 27, 11, 14, 20, 21, 24, 30, 32, 35, 36, 45, 49, 50, 54, 75, 81, 125, 13, 22, 28, 33, 40, 42, 48, 55, 60, 63, 64, 70, 72, 77, 90, 98, 100, 105, 108, 121, 135, 147, 150, 162, 175, 225, 243, 245, 250, 343, 375, 625
Offset: 0
Examples
Triangle T(n,k) begins: 1; 2; 3, 4; 5, 6, 8, 9; 7, 10, 12, 15, 16, 18, 25, 27; 11, 14, 20, 21, 24, 30, 32, 35, 36, 45, 49, 50, 54, 75, 81, 125; ...
Links
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1], sort([seq(map(x-> x* ithprime(j), b(n-`if`(i=0, j, 1), j))[], j=1..`if`(i=0, n, i))])) end: T:= n-> b(n, 0)[]: seq(T(n), n=0..7);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1}, Sort[Flatten[Table[#* Prime[j]& /@ b[n-If[i == 0, j, 1], j], {j, 1, If[i == 0, n, i]}]]]]; T[n_] := b[n, 0]; T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Mar 30 2021, after Alois P. Heinz *)
Comments