A333000 Sum of integers (with multiplicity) encountered on all possible paths from n to 1 when iterating with nondeterministic map k -> k- k/p, where p is any prime factor of k.
1, 3, 6, 7, 12, 25, 39, 15, 43, 47, 69, 76, 115, 185, 198, 31, 48, 209, 304, 138, 604, 317, 432, 203, 213, 500, 344, 640, 901, 899, 1271, 63, 1777, 179, 2274, 736, 1069, 1572, 1860, 361, 525, 3156, 4360, 1074, 2580, 2150, 2808, 506, 4528, 924, 1042, 1630, 2266, 1836, 2878, 1930, 5004, 4165, 5522, 3026, 4307, 6343, 7638, 127, 6801
Offset: 1
Keywords
Examples
a(12): we have three alternative paths: {12, 8, 4, 2, 1}, {12, 6, 4, 2, 1} or {12, 6, 3, 2, 1}, therefore a(12) = (12+8+4+2+1) + (12+6+4+2+1) + (12+6+3+2+1) = 27+25+24 = 76 For n=15 we have five alternative paths from 15 to 1 (illustrated below): therefore a(15) = (15+10+5+4+2+1) + (15+10+8+4+2+1) + (15+12+8+4+2+1) + (15+12+6+4+2+1) + (15+12+6+3+2+1) = 37+40+42+40+39 = 198. 15 / \ / \ 10 12 / \ / \ / \ / \ 5 8 6 \__ | __/| \_|_/ | 4 3 \ / \ / 2 | 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000