A333001 The average path sum (floored down) when iterating from n to 1 with nondeterministic map k -> k - k/p, where p is any prime factor of k.
1, 3, 6, 7, 12, 12, 19, 15, 21, 23, 34, 25, 38, 37, 39, 31, 48, 41, 60, 46, 60, 63, 86, 50, 71, 71, 68, 71, 100, 74, 105, 63, 104, 89, 108, 81, 118, 112, 116, 90, 131, 112, 155, 119, 122, 153, 200, 101, 161, 132, 148, 135, 188, 131, 179, 137, 178, 181, 240, 144, 205, 192, 181, 127, 206, 191, 258, 170, 251, 199, 270, 160, 233, 218, 216
Offset: 1
Keywords
Examples
a(12): we have three alternative paths: {12, 8, 4, 2, 1}, {12, 6, 4, 2, 1} or {12, 6, 3, 2, 1}, with path sums 27, 25, 24, whose average is 76/3 = 25.333..., therefore a(12) = 25. For n=15 we have five alternative paths from 15 to 1 (illustrated below) with path sums 37, 40, 42, 40, 39, whose average is 198/5 = 39.6, therefore a(15) = 39. 15 / \ / \ 10 12 / \ / \ / \ / \ 5 8 6 \_ | __/| \__|_/ | 4 3 \ / \ / 2 | 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
Map[Floor@ Mean[Total /@ #] &, #] &@ Nest[Function[{a, n}, Append[a, Join @@ Table[Flatten@ Prepend[#, n] & /@ a[[n - n/p]], {p, FactorInteger[n][[All, 1]]}]]] @@ {#, Length@ # + 1} &, {{{1}}}, 74] (* Michael De Vlieger, Apr 15 2020 *)
-
PARI
up_to = 20000; A333001list(up_to) = { my(u=vector(up_to), v=vector(up_to)); u[1] = v[1] = 1; for(n=2,up_to, my(ps=factor(n)[, 1]~); u[n] = vecsum(apply(p -> u[n-n/p], ps)); v[n] = (u[n]*n)+vecsum(apply(p -> v[n-n/p], ps))); vector(up_to, n, floor(v[n]/u[n])); }; v333001 = A333001list(up_to); A333001(n) = v333001[n];