A333017 Twice the total area of all (open or closed) Deutsch paths of length n.
0, 1, 6, 25, 90, 306, 1004, 3226, 10218, 32043, 99748, 308787, 951772, 2923563, 8955342, 27368895, 83484042, 254244033, 773219196, 2348780937, 7127522136, 21609615822, 65465845254, 198189732798, 599624708588, 1813169256151, 5480019176754, 16555101318735
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2094
- Helmut Prodinger, Deutsch paths and their enumeration, arXiv:2003.01918 [math.CO], 2020. See p. 8.
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(x, y) option remember; `if`(x=0, [1, 0], add((p-> p+[0, (2*y-j)*p[1]])(b(x-1, y-j)), j=[$1..y, -1])) end: a:= n-> b(n, 0)[2]: seq(a(n), n=0..30); # second Maple program: a:= proc(n) option remember;`if`(n<4, [0, 1, 6, 25][n+1], ((1045*n^2-4419*n-9646)*a(n-1)-3*(1133*n^2-4679*n-1756)* a(n-2)+9*(127*n^2-475*n+480)*a(n-3)+27*(210*n-439)* (n-3)*a(n-4))/((n+3)*(83*n-677))) end: seq(a(n), n=0..30);
-
Mathematica
a = DifferenceRoot[Function[{y, n}, {(-10827 - 16497 n - 5670 n^2) y[n] + (-5508 - 4869 n - 1143 n^2) y[n+1] + (-7032 + 13155 n + 3399 n^2) y[n+2] + (10602 - 3941 n - 1045 n^2) y[n+3] + (7 + n)(-345 + 83 n) y[n+4] == 0, y[0] == 0, y[1] == 1, y[2] == 6, y[3] == 25}]]; a /@ Range[0, 30] (* Jean-François Alcover, Mar 12 2020 *)
Comments