cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333047 Number of compositions of 2n into n powers of 2.

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 76, 218, 645, 1849, 5281, 15346, 44980, 131704, 385568, 1131874, 3331429, 9819405, 28977079, 85633438, 253424053, 750895163, 2227288196, 6613217348, 19654450476, 58463536356, 174041552556, 518488451716, 1545686334184, 4610827520500
Offset: 0

Views

Author

Alois P. Heinz, Mar 06 2020

Keywords

Examples

			a(3) = 4: 222, 114, 141, 411.
a(4) = 13: 2222, 1124, 1142, 1214, 1241, 1412, 1421, 2114, 2141, 2411, 4112, 4121, 4211.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(t=0, 0, add(b(n-2^j, t-1), j=0..ilog2(n))))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, If[t == 0, 1, 0], If[t == 0, 0, Sum[b[n - 2^j, t - 1], {j, 0, Floor@Log2[n]}]]];
    a[n_] := b[2*n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 28 2022, after Alois P. Heinz *)

Formula

a(n) = A073266(2n,n).
a(n) mod 2 = 1 <=> n in { A003714 }.
a(n) ~ c * d^n / sqrt(n), where d = 3.03557496500556374352187743150809307334142929675774277... and c = 0.257758082536856928607441503594486605201517917904563... - Vaclav Kotesovec, Mar 10 2020