A333069 Number of lattice paths from (0,0) to (n,0) that do not go below the x-axis, and at (x,y) only allow steps (1,v) with v in {-1,0,1,...,y+1}.
1, 1, 2, 4, 9, 22, 57, 155, 439, 1287, 3886, 12035, 38100, 122943, 403410, 1343321, 4531710, 15465414, 53325680, 185575269, 651191826, 2302247822, 8194892393, 29350405663, 105713021575, 382717065800, 1392121894189, 5085836001166, 18654616951435, 68678029247822
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
- Wikipedia, Motzkin number
Programs
-
Maple
b:= proc(x, y) option remember; `if`(x=0, 1, add( `if`(x+j>y, b(x-1, y-j), 0), j=-1-y..min(1, y))) end: a:= n-> b(n, 0): seq(a(n), n=0..33);
-
Mathematica
b[x_, y_] := b[x, y] = If[x == 0, 1, Sum[If[x + j > y, b[x - 1, y - j], 0], {j, -1 - y, Min[1, y]}]]; a[n_] := b[n, 0]; a /@ Range[0, 33] (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)
Formula
a(n) = A196161(n) for n = 1..8.
a(n) ~ c * 4^n / n^(3/2), where c = 0.0131789402414023971902275212293294628834887666310830183578424168829... - Vaclav Kotesovec, Mar 25 2020