A333089
a(n) is the denominator of Sum_{i > 0} 1/(Fibonacci(i)*Fibonacci(i+2n)).
Original entry on oeis.org
1, 18, 960, 76440, 37437400, 157024707840, 2777798704721040, 4169982785629476816, 331259342780844858796416, 743322803326470921519628462800, 163037651356772148158514292729628880, 187555796967791569325602741834073910082560, 3838658658324493911932517275499048601188128008800
Offset: 1
These infinite sums begin: 1, 7/18, 143/960, ...
- A.H.M. Smeets, Table of n, a(n) for n = 1..62
- Brother Alfred Brousseau, Summation of Infinite Fibonacci Series, The Fibonacci Quarterly, Vol. 7, No. 2 (1969), pp. 143-168. See (5) and (6) p. 148.
- Stanley Rabinowitz, Algorithmic summation of reciprocals of products of Fibonacci numbers, The Fibonacci Quarterly, Vol. 37 (1999), pp. 122-127. See (23) and (25) p. 5.
-
a[n_] := Denominator[Sum[1/(Fibonacci[2i-1]*Fibonacci[2i]),{i,1,n}] / Fibonacci[2n]]; Array[a, 13] (* Amiram Eldar, Mar 10 2020 *)
-
a(n) = denominator(sum(i=1, n, 1/(fibonacci(2*i-1)*fibonacci(2*i)))/ fibonacci(2*n)); \\ Michel Marcus, Mar 10 2020
-
from math import gcd
f0, f1, snum, sden, n = 1, 1, 0, 1, 0
while n < 13:
snum, sden, n = f0*f1*snum+sden, sden*f0*f1, n+1
d = gcd(snum, sden*f0)
print(n, sden*f0//d)
f0, f1 = 2*f0+f1, f0+f1 # A.H.M. Smeets, May 16 2020
A333209
a(n) is the denominator of Sum_{i >= 0} 1/(Lucas(i)*Lucas(i+2n)), with Lucas(i) as defined in A000032.
Original entry on oeis.org
2, 36, 7392, 1688148, 197412831, 21085413226416, 101768454084335346, 60343478516053297339236, 73240105330540144095414793632, 1956470757376233684880813258936380492, 32802418997525523144166495047229414174839, 202042966989952174292936124782341088713724476716231
Offset: 1
These infinite sums begin: 1/2, 7/36, 551/7392, ...
-
a[n_] := Denominator[Sum[1/(LucasL[2 i - 2]*LucasL[2 i - 1]), {i, 1, n}]/Fibonacci[2 n]]; Array[a, 12] (* Amiram Eldar, Mar 11 2020 *)
-
from math import gcd
f0, f1, g0, g1, snum, sden, n = 1, 1, 1, 2, 0, 1, 0
while n < 12:
n = n+1
snum, sden = g0*g1*snum+sden, sden*g0*g1
d = gcd(snum,sden*f0)
print(n,sden*f0//d)
f0, f1, g0, g1 = 2*f0+f1, f0+f1, 2*g0+g1, g0+g1 # A.H.M. Smeets, Nov 30 2020
-
from math import gcd
f0, f1, g0, g1, snum, sden, n = 1, 1, 1, 2, 0, 1, 0
while n < 12:
n = n+1
snum, sden = g0*g1*snum+sden, sden*g0*g1
d = gcd(snum,sden*f0)
print(n,sden*f0//d)
f0, f1, g0, g1 = 2*f0+f1, f0+f1, 2*g0+g1, g0+g1 # A.H.M. Smeets, Nov 30 2020
A333208
a(n) is the numerator of Sum_{i >= 0} 1/(Lucas(i)*Lucas(i+2n)), with Lucas(i) as defined in A000032.
Original entry on oeis.org
1, 7, 551, 48091, 2148268, 87644575267, 161577754532123, 36595152483523582367, 16965509829762630129638831, 173107561150078104051618631740949, 1108595900580419409151086339986148307, 2608169750203411467722731179728125652086612772
Offset: 1
These infinite sums begin: 1/2, 7/36, 551/7392, ...
-
a[n_] := Numerator[Sum[1/(LucasL[2 i - 2]*LucasL[2 i - 1]), {i, 1, n}]/Fibonacci[2 n]]; Array[a, 12] (* Amiram Eldar, Mar 11 2020 *)
Showing 1-3 of 3 results.
Comments