cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333091 a(n) is the n-th order Taylor polynomial (centered at 0) of S(x)^(2*n ) evaluated at x = 1, where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the Schröder numbers A006318.

Original entry on oeis.org

1, 5, 57, 761, 10817, 159005, 2386857, 36348401, 559362561, 8676917429, 135445348057, 2125030235113, 33479772021953, 529326516063181, 8393856020704841, 133449301759137761, 2126391547960594433, 33948765589280671589, 542950968447834265209, 8697032976559212532953
Offset: 0

Views

Author

Peter Bala, Mar 22 2020

Keywords

Comments

The sequence satisfies the Gauss congruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k.
We conjecture that the sequence satisfies the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. Examples of these congruences are given below.
More generally, for each integer m, we conjecture that the sequence a_m(n), defined as the n-th order Taylor polynomial of S(x)^(m*n) evaluated at x = 1 satisfies the same congruences. For cases see A333090 (m = 1) and A333092 (m = 3). For similarly defined sequences see A333093 through A333097.

Examples

			n-th order Taylor polynomial of S(x)^(2*n):
  n = 0: S(x)^0 = 1 + O(x)
  n = 1: S(x)^2 = 1 + 4*x + O(x^2)
  n = 2: S(x)^4 = 1 + 8*x + 48*x^2 + O(x^3)
  n = 3: S(x)^6 = 1 + 12*x + 96*x^2 + 652*x^3 + O(x^4)
  n = 4: S(x)^8 = 1 + 16*x + 160*x^2 + 1296*x^3 + 9344*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 4 = 5, a(2) = 1 + 8 + 48 = 57, a(3) = 1 + 12 + 96 + 652 = 761 and a(4) = 1 + 16 + 160 + 1296 + 9344 = 10817.
The triangle of coefficients of the n-th order Taylor polynomial of S(x)^(2*n), n >= 0, in descending powers of x begins
                                          row sums
  n = 0 |    1                                1
  n = 1 |    4    1                           5
  n = 2 |   48    8    1                     57
  n = 3 |  652   96   12   1                761
  n = 4 | 9344 1296  160  16   1          10817
   ...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 4, 48, 652, 9344, 138004, ...]  = [x^n] S(x)^(2*n), and may also satisfy the above congruences.
Examples of congruences:
a(13) - a(1) = 529326516063181 - 5 = (2^3)*(13^3)*30116438101 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 2240508640665255893197949 - 761 = (2^2)*3*(7^3)*11* 49485569411283149863 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 150633078429259494145205034005 - 159005 = (2^3)*(3^3)*(5^6)*11*23*61*2663*28097*119633*323083 == 0 ( mod 5^6 ).
		

Crossrefs

Programs

  • Maple
    S:= x -> (1/2)*(1-x-sqrt(1-6*x+x^2))/x:
    G := (x,n) -> series(S(x)^(2*n), x, 76):
    seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
  • Mathematica
    Table[SeriesCoefficient[((1+x) * (1 - 2*x*(1+x) - Sqrt[1 - 4*x*(1+x)]) / (2*x^2))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)

Formula

a(n) = [x^n] ( (1 + x)*S^2(x/(1 + x)) )^n
O.g.f.: ( 1 + x*f'(x)/f(x) )/( 1 - x*f(x) ), where f(x) = 1 + 4*x + 32*x^2 + 324*x^3 + 3696*x^4 + ... = (1/x)*Revert( x/S^2(x) ).
Row sums of the Riordan array ( 1 + x*f'(x)/f(x), x*f(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ sqrt(120 + 39*sqrt(10)) * (223 + 70*sqrt(10))^n / (30*sqrt(Pi*n) * 3^(3*n)). - Vaclav Kotesovec, Mar 28 2020