A333095 a(n) = the n-th order Taylor polynomial (centered at 0) of c(x)^(3*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the sequence of Catalan numbers A000108.
1, 4, 34, 337, 3554, 38754, 431521, 4874377, 55639010, 640177033, 7412165034, 86256322816, 1007980394849, 11820510331777, 139032549536551, 1639506780365337, 19376785465043938, 229458302589724067, 2721958273545613513, 32339465512495259708, 384758834631081248554
Offset: 0
Examples
n-th order Taylor polynomial of c(x)^(3*n): n = 0: c(x)^0 = 1 + O(x) n = 1: c(x)^3 = 1 + 3*x + O(x^2) n = 2: c(x)^6 = 1 + 6*x + 27*x^2 + O(x^3) n = 3: c(x)^9 = 1 + 9*x + 54*x^2 + 273*x^3 + O(x^4) n = 4: c(x)^12 = 1 + 12*x + 90*x^2 + 544*x^3 + 2907*x^4 + O(x^5) Setting x = 1 gives a(0) = 1, a(1) = 1 + 3 = 4, a(2) = 1 + 6 + 27 = 34, a(3) = 1 + 9 + 54 + 273 = 337 and a(4) = 1 + 12 + 90 + 544 + 2907 = 3554. The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins row sums n = 0 | 1 1 n = 1 | 3 1 4 n = 2 | 27 6 1 34 n = 3 | 273 54 9 1 337 n = 4 | 2907 544 90 12 1 3554 ... This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. Examples of supercongruences: a(13) - a(1) = 11820510331777 - 4 = 3*11*(13^3)*(43^2)*88177 == 0 ( mod 13^3 ). a(3*7) - a(3) = 4583419703934987639046 - 337 = (3^2)*(7^4)*2441* 86893477573061 == 0 ( mod 7^3 ). a(5^2) - a(5) = 93266278848727959965820004 - 38754 = 2*(5^7)*19* 31416009717466260199 == 0 ( mod 5^6 ).
Programs
-
Maple
seq(add(3*n/(3*n+k)*binomial(3*n+2*k-1,k), k = 0..n), n = 1..25); #alternative program c:= x → (1/2)*(1-sqrt(1-4*x))/x: G := (x,n) → series(c(x)^(3*n), x, 101): seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Mathematica
Join[{1}, Table[3*Binomial[5*n-1, n] * HypergeometricPFQ[{1, -4*n, -n}, {1/2 - 5*n/2, 1 - 5*n/2}, 1/4]/4, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *)
Formula
a(n) = Sum_{k = 0..n} 3*n/(3*n+k)*binomial(3*n+2*k-1, k) for n >= 1.
a(n) = [x^n] ( (1 + x)*c^3(x/(1 + x)) )^n.
O.g.f.: ( 1 + x*f'(x)/f(x) )/( 1 - x*f(x) ), where f(x) = 1 + 3*x + 18*x^2 + 136*x^3 + 1155*x^4 + ... = (1/x)*Revert( x/c^3(x) ) is the o.g.f. of A118970.
Row sums of the Riordan array ( 1 + x*f'(x)/f(x), f(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ 5^(5*n + 3/2) / (7 * 2^(8*n + 3/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Mar 28 2020
a(n) = Sum_{k = 0..n} 3*n/(3*n+2*k)*binomial(3*n+2*k, k) for n >= 1. - Peter Bala, May 03 2024
Comments