A333114 Sum over all closed Deutsch paths of length n of products over all peaks p of x_p/y_p, where x_p and y_p are the coordinates of peak p.
1, 0, 1, 1, 5, 11, 44, 134, 529, 1902, 7793, 31068, 133641, 574259, 2594969, 11842726, 56083004, 269450143, 1333170844, 6703500545, 34548749471, 181026885253, 969167994094, 5273977173249, 29257773480987, 164894374634333, 945779302210358, 5507572390808676
Offset: 0
Keywords
Examples
a(4) = (1/1)*(3/1) + 2/2 + 3/3 = 5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- Helmut Prodinger, Deutsch paths and their enumeration, arXiv:2003.01918 [math.CO], 2020
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(x=0, 1, add( `if`(t and j<0, x/y, 1)*b(x-1, y+j, is(j>0)), j=[ `if`(y=0, [][], -1), $1..x-1-y])) end: a:= n-> b(n, 0, false): seq(a(n), n=0..30);
-
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Sum[If[t && j < 0, x/y, 1]* b[x-1, y+j, j > 0], {j, Join[If[y == 0, {}, {-1}], Range[x-1-y]]}]]; a[n_] := b[n, 0, False]; a /@ Range[0, 30] (* Jean-François Alcover, Mar 19 2020, after Alois P. Heinz *)
Comments