A333119 Triangle T read by rows: T(n, k) = (n - k)*(1 - (-1)^k + 2*k)/4, with 0 <= k < n.
0, 0, 1, 0, 2, 1, 0, 3, 2, 2, 0, 4, 3, 4, 2, 0, 5, 4, 6, 4, 3, 0, 6, 5, 8, 6, 6, 3, 0, 7, 6, 10, 8, 9, 6, 4, 0, 8, 7, 12, 10, 12, 9, 8, 4, 0, 9, 8, 14, 12, 15, 12, 12, 8, 5, 0, 10, 9, 16, 14, 18, 15, 16, 12, 10, 5, 0, 11, 10, 18, 16, 21, 18, 20, 16, 15, 10, 6
Offset: 1
Examples
n\k| 0 1 2 3 4 5 ---+------------ 1 | 0 2 | 0 1 3 | 0 2 1 4 | 0 3 2 2 5 | 0 4 3 4 2 6 | 0 5 4 6 4 3 ... For n = 4 the matrix M(4) is 0 1 1 2 1 0 1 1 1 1 0 1 2 1 1 0 and therefore T(4, 0) = 0, T(4, 1) = 3, T(4, 2) = 2 and T(4, 3) = 2.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=(n-k)(1-(-1)^k+2k)/4; Flatten[Table[T[n,k],{n,1,12},{k,0,n-1}]] (* or *) r[n_] := Table[SeriesCoefficient[y*(x*(2 + y + y^2) - (1 + y + 2*y^2))/((1 - x)^2 *(1 - y)^3 (1 + y)^2), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n-1}]; Flatten[Array[r, 12]]
Formula
O.g.f.: y*(x*(2 + y + y^2) - (1 + y + 2*y^2))/((1 - x)^2*(1 - y)^3*(1 + y)^2).
T(n, k) = k*(n - k)/2 for k even.
T(n, k) = (1 + k)*(n - k)/2 for k odd.
Comments