A332978 The number of regions formed inside a triangle with leg lengths equal to the Pythagorean triples by straight line segments mutually connecting all vertices and all points that divide the sides into unit length parts.
271, 5746, 14040, 32294, 50551, 108737, 180662, 276533, 259805, 558256, 591687, 901811, 1117126, 1015277, 1386667, 1223260, 1944396, 3149291, 3165147, 4523784, 4764416, 4859839, 6025266, 7186096
Offset: 1
Examples
The triples are ordered by the total sum of the leg lengths: Triple | Number of regions (3, 4, 5) | 271 (6, 8, 10) | 5746 (5, 12, 13) | 14040 (9, 12, 15) | 32294 (8, 15, 17) | 50551 (12, 16, 20) | 108737 (7, 24, 25) | 180662 (15, 20, 25) | 276533 (10, 24, 26) | 259805 (20, 21, 29) | 558256 (18, 24, 30) | 591687 (16, 30, 34) | 901811 (21, 28, 35) | 1117126 (12, 35, 37) | 1015277 (15, 36, 39) | 1386667 (9, 40, 41) | 1223260 (24, 32, 40) | 1944396 (27, 36, 45) | 3149291 (14, 48, 50) | 3165147 (20, 48, 52) | 4523784 (24, 45, 51) | 4764416 (30, 40, 50) | 4859839 (28, 45, 53) | 6025266 (33, 44, 55) | 7186096
Links
- Scott R. Shannon, Triangle regions for leg lengths (3,4,5).
- Scott R. Shannon, Triangle regions for leg lengths (6,8,10).
- Scott R. Shannon, Triangle regions for leg lengths (5,12,13).
- Scott R. Shannon, Triangle regions for leg lengths (9,12,15).
- Scott R. Shannon, Triangle regions for leg lengths (8,15,17).
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
- Wikipedia, Pythagorean triple.
Crossrefs
Extensions
a(8)-a(24) from Lars Blomberg, Jun 07 2020
Comments