A333141 G.f.: Sum_{k>=1} (k^2 * x^(k^2) / Product_{j=1..k} (1 - x^j)).
0, 1, 1, 1, 5, 5, 9, 9, 13, 22, 26, 35, 48, 57, 70, 88, 117, 135, 173, 207, 261, 304, 374, 433, 528, 628, 739, 864, 1032, 1198, 1416, 1639, 1914, 2212, 2569, 2949, 3433, 3920, 4511, 5150, 5925, 6732, 7720, 8736, 9969, 11284, 12823, 14444, 16395, 18457, 20836
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> add(k^2 * b(n-k^2, k), k=1..floor(sqrt(n))): seq(a(n), n=0..50); # after Alois P. Heinz
-
Mathematica
nmax = 50; CoefficientList[Series[Sum[n^2 * x^(n^2) / Product[1 - x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]