A333145 Number of unimodal negated permutations of the multiset of prime indices of n.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 3, 1, 2, 3, 2, 2, 4, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1
Keywords
Examples
The a(n) permutations for n = 2, 6, 18, 30, 90, 162, 210, 450: (1) (12) (122) (123) (1223) (12222) (1234) (12233) (21) (212) (213) (2123) (21222) (2134) (21233) (221) (312) (2213) (22122) (3124) (22133) (321) (3122) (22212) (3214) (31223) (3212) (22221) (4123) (32123) (3221) (4213) (32213) (4312) (33122) (4321) (33212) (33221)
Links
- Eric Weisstein's World of Mathematics, Unimodal Sequence
- Wikipedia, Permutation pattern
Crossrefs
Dominated by A008480.
The complementary divisors are counted by A069157.
The non-negated version is A332288.
A more interesting version is A332741.
The complement is counted by A333146.
A001523 counts unimodal compositions.
A007052 counts unimodal normal sequences.
A332578 counts compositions whose negation is unimodal.
A332638 counts partitions with unimodal negated run-lengths.
A332642 lists numbers with non-unimodal negated unsorted prime signature.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; Table[Length[Select[Permutations[primeMS[n]],unimodQ[-#]&]],{n,30}]
Comments