A333147 Number of compositions of n that are either strictly increasing or strictly decreasing.
1, 1, 1, 3, 3, 5, 7, 9, 11, 15, 19, 23, 29, 35, 43, 53, 63, 75, 91, 107, 127, 151, 177, 207, 243, 283, 329, 383, 443, 511, 591, 679, 779, 895, 1023, 1169, 1335, 1519, 1727, 1963, 2225, 2519, 2851, 3219, 3631, 4095, 4607, 5179, 5819, 6527, 7315, 8193, 9163
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 15 compositions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,1) (3,1) (2,3) (2,4) (2,5) (2,6) (2,7) (3,2) (4,2) (3,4) (3,5) (3,6) (4,1) (5,1) (4,3) (5,3) (4,5) (1,2,3) (5,2) (6,2) (5,4) (3,2,1) (6,1) (7,1) (6,3) (1,2,4) (1,2,5) (7,2) (4,2,1) (1,3,4) (8,1) (4,3,1) (1,2,6) (5,2,1) (1,3,5) (2,3,4) (4,3,2) (5,3,1) (6,2,1)
Links
- Eric Weisstein's World of Mathematics, Unimodal Sequence
Crossrefs
Programs
-
Mathematica
Table[2*PartitionsQ[n]-1,{n,0,30}]
Formula
a(n) = 2*A000009(n) - 1.
Comments