A333148 Number of compositions of n whose non-adjacent parts are weakly decreasing.
1, 1, 2, 4, 7, 12, 19, 30, 46, 69, 102, 149, 214, 304, 428, 596, 823, 1127, 1532, 2068, 2774, 3697, 4900, 6460, 8474, 11061, 14375, 18600, 23970, 30770, 39354, 50153, 63702, 80646, 101783, 128076, 160701, 201076, 250933, 312346, 387832, 480409, 593716, 732105, 900810, 1106063, 1355336, 1657517, 2023207, 2464987, 2997834, 3639464
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 19 compositions: (1) (2) (3) (4) (5) (6) (11) (12) (13) (14) (15) (21) (22) (23) (24) (111) (31) (32) (33) (121) (41) (42) (211) (131) (51) (1111) (212) (141) (221) (222) (311) (231) (1211) (312) (2111) (321) (11111) (411) (1311) (2121) (2211) (3111) (12111) (21111) (111111) For example, (2,3,1,2) is such a composition, because the non-adjacent pairs of parts are (2,1), (2,2), (3,2), all of which are weakly decreasing.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..700
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,,y_,_}/;y>x]&]],{n,0,15}]
-
Sage
def a333148(n): return number_of_partitions(n) + sum( Partitions(m, max_part=l, length=k).cardinality() * Partitions(n-m-l^2, min_length=k+2*l).cardinality() for l in range(1, (n+1).isqrt()) for m in range((n-l^2-2*l)*l//(l+1)+1) for k in range(ceil(m/l), min(m,n-m-l^2-2*l)+1) ) # Max Alekseyev, Oct 31 2024
Formula
See Sage code for the formula. - Max Alekseyev, Oct 31 2024
Extensions
Edited and terms a(21)-a(51) added by Max Alekseyev, Oct 30 2024