A333152 G.f.: Sum_{k>=1} (k^4 * x^(k^2) / Product_{j=1..k} (1 - x^j)).
0, 1, 1, 1, 17, 17, 33, 33, 49, 130, 146, 227, 324, 405, 502, 664, 1017, 1179, 1613, 2031, 2721, 3220, 4166, 4921, 6204, 7840, 9379, 11352, 14028, 16882, 20520, 24511, 29286, 34864, 41401, 48741, 58417, 68144, 80207, 93698, 110325, 128124, 150436, 173424
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> add(k^4 * b(n-k^2, k), k=1..floor(sqrt(n))): seq(a(n), n=0..50); # after Alois P. Heinz
-
Mathematica
nmax = 50; CoefficientList[Series[Sum[n^4*x^(n^2)/Product[1-x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
Comments