A333154 G.f.: Sum_{k>=1} (k^2 * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j)).
0, 0, 1, 1, 1, 1, 5, 5, 9, 9, 13, 13, 26, 26, 39, 48, 61, 70, 92, 101, 139, 157, 195, 229, 292, 326, 405, 464, 559, 634, 779, 870, 1047, 1188, 1406, 1604, 1888, 2127, 2493, 2823, 3271, 3683, 4283, 4802, 5525, 6221, 7112, 7992, 9137, 10210, 11625, 13013, 14734
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> add(k^2 * b(n-k*(k+1), k), k=1..floor(sqrt(n))): seq(a(n), n=0..60); # after Alois P. Heinz
-
Mathematica
nmax = 60; CoefficientList[Series[Sum[n^2 * x^(n*(n+1)) / Product[1 - x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
Comments