cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333154 G.f.: Sum_{k>=1} (k^2 * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j)).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 5, 5, 9, 9, 13, 13, 26, 26, 39, 48, 61, 70, 92, 101, 139, 157, 195, 229, 292, 326, 405, 464, 559, 634, 779, 870, 1047, 1188, 1406, 1604, 1888, 2127, 2493, 2823, 3271, 3683, 4283, 4802, 5525, 6221, 7112, 7992, 9137, 10210, 11625, 13013, 14734
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2020

Keywords

Comments

In general, if m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j)), then a(n) ~ r^m * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2) * phi^(1/2)), where r = A333155 = sqrt(15) * log(phi) / Pi = 0.59324221500336912718413761733... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(k^2 * b(n-k*(k+1), k), k=1..floor(sqrt(n))):
    seq(a(n), n=0..60);  # after Alois P. Heinz
  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[n^2 * x^(n*(n+1)) / Product[1 - x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(2*Pi*sqrt(n/15)) * n^(1/4), where c = A333155^2 / (2 * 3^(1/4) * 5^(1/2) * phi^(1/2)) = 0.04700834526394839955207674000683... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.