A333155 Decimal expansion of a constant related to the asymptotics of A268188 and A333153.
5, 9, 3, 2, 4, 2, 2, 1, 5, 0, 0, 3, 3, 6, 9, 1, 2, 7, 1, 8, 4, 1, 3, 7, 6, 1, 7, 3, 3, 0, 2, 5, 5, 9, 5, 4, 1, 1, 0, 9, 9, 5, 9, 5, 4, 9, 6, 2, 7, 9, 5, 7, 4, 2, 9, 0, 6, 0, 2, 4, 5, 7, 8, 6, 0, 4, 5, 3, 5, 9, 2, 2, 3, 8, 5, 4, 6, 8, 1, 3, 3, 3, 3, 2, 5, 5, 0, 4, 8, 0, 7, 2, 0, 2, 8, 1, 9, 6, 6, 3, 9, 7, 1, 0, 7, 1
Offset: 0
Examples
0.5932422150033691271841376173302559541109959549627957429060245786...
Programs
-
Maple
evalf(sqrt(15) * log((sqrt(5) + 1)/2) / Pi, 120);
-
Mathematica
RealDigits[Sqrt[15]*Log[GoldenRatio]/Pi, 10, 105][[1]]
Formula
Equals sqrt(15) * log(phi) / Pi, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
If m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k^2) / Product_{j=1..k} (1 - x^j)), then a(n) ~ A333155^m * phi^(1/2) * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2)).
If m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j)), then a(n) ~ A333155^m * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2) * phi^(1/2)).