cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A268188 Sum of the sizes of the Durfee squares of all no-leg partitions of n (or of all no-arm partitions of n).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 5, 7, 10, 12, 15, 20, 23, 28, 34, 43, 49, 61, 71, 87, 100, 120, 137, 164, 190, 221, 254, 298, 340, 396, 451, 520, 592, 679, 769, 883, 996, 1133, 1278, 1453, 1632, 1850, 2072, 2339, 2620, 2947, 3288, 3695, 4119, 4608, 5129, 5728, 6360, 7091, 7862
Offset: 1

Views

Author

Emeric Deutsch, Jan 29 2016

Keywords

Comments

Given a partition P, the partition formed by the cells situated below the Durfee square of P is called the leg of P. Similarly, the partition formed by the cells situated to the right of the Durfee square of P is called the arm of P.
Conjecture: also a(n) is the number of parts in the partitions of n whose parts differ by at least 2. For example, for n = 5, these partitions are 5, 41 with 3 parts in all. George Beck, Apr 22 2017
Note added Apr 22 2017. George E. Andrews informed me that this is part of the common interpretation of the Rogers-Ramanujan identities. - George Beck

Examples

			a(9)=10 because the no-leg partitions of 9 are [9], [7,2], [6,3], [5,4], and [3,3,3] with sizes of Durfee squares 1,2,2,2, and 3, respectively.
		

References

  • George E. Andrews, "Partitions and Durfee Dissection", Amer. J. Math. 101(1979), 735-742.

Crossrefs

Programs

  • Maple
    g := add(k*x^(k^2)/mul(1-x^i, i = 1 .. k), k = 1 .. 100): gser := series(g, x = 0, 60): seq(coeff(gser, x, n), n = 1 .. 55);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(k*b(n-k^2, k), k=1..floor(sqrt(n))):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 30 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]]; a[n_] := Sum[k*b[n - k^2, k], {k, 1, Floor[Sqrt[n]]}]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)

Formula

a(n) = Sum_{k>=1} k*A268187(n,k).
G.f.: g = Sum_{k>=1} (k*x^(k^2)/Product_{i=1..k}(1-x^i)).
a(n) ~ 3^(1/4) * log(phi) * phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (2*Pi*n^(1/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 09 2020

A333141 G.f.: Sum_{k>=1} (k^2 * x^(k^2) / Product_{j=1..k} (1 - x^j)).

Original entry on oeis.org

0, 1, 1, 1, 5, 5, 9, 9, 13, 22, 26, 35, 48, 57, 70, 88, 117, 135, 173, 207, 261, 304, 374, 433, 528, 628, 739, 864, 1032, 1198, 1416, 1639, 1914, 2212, 2569, 2949, 3433, 3920, 4511, 5150, 5925, 6732, 7720, 8736, 9969, 11284, 12823, 14444, 16395, 18457, 20836
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(k^2 * b(n-k^2, k), k=1..floor(sqrt(n))):
    seq(a(n), n=0..50); # after Alois P. Heinz
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[n^2 * x^(n^2) / Product[1 - x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(2*Pi*sqrt(n/15)) * n^(1/4), where c = A333155^2 * phi^(1/2) / (2 * 3^(1/4) * 5^(1/2)) = 0.076061100391958657489521534823556... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

A333151 G.f.: Sum_{k>=1} (k^3 * x^(k^2) / Product_{j=1..k} (1 - x^j)).

Original entry on oeis.org

0, 1, 1, 1, 9, 9, 17, 17, 25, 52, 60, 87, 122, 149, 184, 238, 337, 391, 517, 635, 825, 970, 1224, 1433, 1778, 2176, 2585, 3074, 3736, 4414, 5292, 6223, 7354, 8626, 10135, 11785, 13915, 16068, 18701, 21600, 25141, 28884, 33512, 38288, 44165, 50494, 57961
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(k^3 * b(n-k^2, k), k=1..floor(sqrt(n))):
    seq(a(n), n=0..50);  # after Alois P. Heinz
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[n^3*x^(n^2)/Product[1-x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(2*Pi*sqrt(n/15)) * n^(3/4), where c = A333155^3 * phi^(1/2) / (2 * 3^(1/4) * 5^(1/2)) = 0.04512265567211918167849606290245... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

A333153 G.f.: Sum_{k>=1} (k * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j)).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 3, 3, 5, 5, 7, 7, 12, 12, 17, 20, 25, 28, 36, 39, 51, 57, 69, 79, 98, 108, 131, 148, 175, 196, 235, 260, 307, 344, 400, 450, 522, 581, 671, 751, 859, 957, 1097, 1218, 1385, 1543, 1744, 1940, 2193, 2428, 2735, 3033, 3400, 3763, 4215, 4654
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(k * b(n-k*(k+1), k), k=1..floor(sqrt(n))):
    seq(a(n), n=0..60);  # after Alois P. Heinz
  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[n * x^(n*(n+1)) / Product[1 - x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(2*Pi*sqrt(n/15)) / n^(1/4), where c = A333155 / (2 * 3^(1/4) * 5^(1/2) * phi^(1/2)) = 0.07923971705837122678006319599762... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

A333152 G.f.: Sum_{k>=1} (k^4 * x^(k^2) / Product_{j=1..k} (1 - x^j)).

Original entry on oeis.org

0, 1, 1, 1, 17, 17, 33, 33, 49, 130, 146, 227, 324, 405, 502, 664, 1017, 1179, 1613, 2031, 2721, 3220, 4166, 4921, 6204, 7840, 9379, 11352, 14028, 16882, 20520, 24511, 29286, 34864, 41401, 48741, 58417, 68144, 80207, 93698, 110325, 128124, 150436, 173424
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2020

Keywords

Comments

In general, if m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k^2) / Product_{j=1..k} (1 - x^j)), then a(n) ~ r^m * phi^(1/2) * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2)), where r = A333155 = sqrt(15) * log(phi) / Pi = 0.59324221500336912718413761733... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(k^4 * b(n-k^2, k), k=1..floor(sqrt(n))):
    seq(a(n), n=0..50);  # after Alois P. Heinz
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[n^4*x^(n^2)/Product[1-x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(2*Pi*sqrt(n/15)) * n^(5/4), where c = A333155^4 * phi^(1/2) / (2 * 3^(1/4) * 5^(1/2)) = 0.026768664197762321048783840410317... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

A333154 G.f.: Sum_{k>=1} (k^2 * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j)).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 5, 5, 9, 9, 13, 13, 26, 26, 39, 48, 61, 70, 92, 101, 139, 157, 195, 229, 292, 326, 405, 464, 559, 634, 779, 870, 1047, 1188, 1406, 1604, 1888, 2127, 2493, 2823, 3271, 3683, 4283, 4802, 5525, 6221, 7112, 7992, 9137, 10210, 11625, 13013, 14734
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2020

Keywords

Comments

In general, if m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j)), then a(n) ~ r^m * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2) * phi^(1/2)), where r = A333155 = sqrt(15) * log(phi) / Pi = 0.59324221500336912718413761733... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(k^2 * b(n-k*(k+1), k), k=1..floor(sqrt(n))):
    seq(a(n), n=0..60);  # after Alois P. Heinz
  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[n^2 * x^(n*(n+1)) / Product[1 - x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(2*Pi*sqrt(n/15)) * n^(1/4), where c = A333155^2 / (2 * 3^(1/4) * 5^(1/2) * phi^(1/2)) = 0.04700834526394839955207674000683... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
Showing 1-6 of 6 results.