cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333156 Number of Dyck paths with no UUU's and no DDD's, of semilength 2n and having exactly n (possibly overlapping) occurrences of the consecutive pattern UDUD, where U=(1,1) and D=(1,-1).

Original entry on oeis.org

1, 1, 1, 8, 20, 84, 448, 1500, 8085, 37895, 161161, 874328, 4053140, 19724964, 103818660, 499182288, 2574393657, 13320605595, 66783194335, 351243492600, 1816922207100, 9395207816280, 49712099948160, 259448325851520, 1367225671234800, 7260061875376752
Offset: 0

Views

Author

Alois P. Heinz, Mar 12 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x or t=8, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 7, 4, 7, 2, 2, 8][t])
          +`if`(t=4, z, 1)  *b(x-1, y-1, [5, 3, 6, 3, 6, 8, 3][t]))))
        end:
    a:= n-> coeff(b(4*n, 0, 1),z,n):
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x || t == 8, 0,
        If[x == 0, 1, Expand[b[x-1, y+1, {2, 7, 4, 7, 2, 2, 8}[[t]]] +
        If[t == 4, z, 1]    *b[x-1, y-1, {5, 3, 6, 3, 6, 8, 3}[[t]]]]]];
    a[n_] := Coefficient[b[4n, 0, 1], z, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 22 2020, after Alois P. Heinz *)

Formula

a(n) = A166288(2n,n).
From Vaclav Kotesovec, Mar 25 2020: (Start)
Recurrence: 43*(n-3)*(n-2)*(n-1)*n*(n+3)*(29329371*n^8 - 668927160*n^7 + 6506375706*n^6 - 35220417132*n^5 + 115953126831*n^4 - 237666494332*n^3 + 296611537564*n^2 - 207261219680*n + 63003153728)*a(n) = - 4*(n-3)*(n-2)*(n-1)*(87988113*n^10 - 1918793367*n^9 + 21033212895*n^8 - 166219084485*n^7 + 1012118366637*n^6 - 4429730336313*n^5 + 12942580570661*n^4 - 23748947161707*n^3 + 25109635302718*n^2 - 12660105337632*n + 1551575603232)*a(n-1) + (n-3)*(n-2)*(17333658261*n^11 - 430003268082*n^10 + 4720195682289*n^9 - 30488738625378*n^8 + 130209568442559*n^7 - 391419388419558*n^6 + 854545434284843*n^5 - 1354517078622998*n^4 + 1497954483509776*n^3 - 1053300009224368*n^2 + 388719936912768*n - 43770999939840)*a(n-2) + 2*(n-3)*(75523130325*n^12 - 2175626218950*n^11 + 27885098744163*n^10 - 209720413989444*n^9 + 1027277775429867*n^8 - 3437608878152710*n^7 + 8015815014349173*n^6 - 13049567806279672*n^5 + 14668786642708680*n^4 - 11184194641379704*n^3 + 5732514658835232*n^2 - 2001452813291520*n + 419517078888960)*a(n-3) - 9*(n-4)*(3*n - 13)*(3*n - 11)^2*(3*n - 10)*(29329371*n^8 - 434292192*n^7 + 2645107974*n^6 - 8587188480*n^5 + 16087282131*n^4 - 17700650032*n^3 + 11496031852*n^2 - 4736806800*n + 1286464896)*a(n-4).
a(n) ~ c * d^n / n^2, where d = 5.710108688327460098727830084... is the largest real root of equation 729 - 5150*d - 591*d^2 + 12*d^3 + 43*d^4 = 0 and c = 0.6168196189025568013359529457528774707879625027815570205940188285182461138... (End)