A333157 Triangle read by rows: T(n,k) is the number of n X n symmetric binary matrices with k ones in every row and column.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 18, 10, 1, 1, 26, 112, 112, 26, 1, 1, 76, 820, 1760, 820, 76, 1, 1, 232, 6912, 35150, 35150, 6912, 232, 1, 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1, 1, 2620, 708256, 24243520, 133948836, 133948836, 24243520, 708256, 2620, 1
Offset: 0
Examples
Triangle begins: 1, 1, 1; 1, 2, 1; 1, 4, 4, 1; 1, 10, 18, 10, 1; 1, 26, 112, 112, 26, 1; 1, 76, 820, 1760, 820, 76, 1; 1, 232, 6912, 35150, 35150, 6912, 232, 1; 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..230
Crossrefs
Programs
-
PARI
\\ See script in A295193 for comments. GraphsByDegreeSeq(n, limit, ok)={ local(M=Map(Mat([x^0,1]))); my(acc(p,v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v))); my(recurse(r,p,i,q,v,e) = if(e<=limit && poldegree(q)<=limit, if(i<0, if(ok(x^e+q, r), acc(x^e+q, v)), my(t=polcoeff(p,i)); for(k=0,t,self()(r,p,i-1,(t-k+x*k)*x^i+q,binomial(t,k)*v,e+k))))); for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i,1]); recurse(n-k, p, poldegree(p), 0, src[i,2], 0))); Mat(M); } Row(n)={my(M=GraphsByDegreeSeq(n, n\2, (p,r)->poldegree(p)-valuation(p,x) <= r + 1), v=vector(n+1)); for(i=1, matsize(M)[1], my(p=M[i,1], d=poldegree(p)); v[1+d]+=M[i,2]; if(pollead(p)==n, v[2+d]+=M[i,2])); for(i=1, #v\2, v[#v+1-i]=v[i]); v} for(n=0, 8, print(Row(n))) \\ Andrew Howroyd, Mar 14 2020
Formula
T(n,k) = T(n,n-k).
Comments