cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A333157 Triangle read by rows: T(n,k) is the number of n X n symmetric binary matrices with k ones in every row and column.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 18, 10, 1, 1, 26, 112, 112, 26, 1, 1, 76, 820, 1760, 820, 76, 1, 1, 232, 6912, 35150, 35150, 6912, 232, 1, 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1, 1, 2620, 708256, 24243520, 133948836, 133948836, 24243520, 708256, 2620, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 09 2020

Keywords

Comments

T(n,k) is the number of k-regular symmetric relations on n labeled nodes.
T(n,k) is the number of k-regular graphs with half-edges on n labeled vertices.
Terms may be computed without generating all graphs by enumerating the number of graphs by degree sequence. A PARI program showing this technique is given below. Burnside's lemma as applied in A122082 and A000666 can be used to extend this method to the case of unlabeled vertices A333159 and A333161 respectively.

Examples

			Triangle begins:
  1,
  1,   1;
  1,   2,     1;
  1,   4,     4,      1;
  1,  10,    18,     10,       1;
  1,  26,   112,    112,      26,      1;
  1,  76,   820,   1760,     820,     76,     1;
  1, 232,  6912,  35150,   35150,   6912,   232,   1;
  1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1;
  ...
		

Crossrefs

Row sums are A322698.
Central coefficients are A333164.
Cf. A188448 (transposed as array).

Programs

  • PARI
    \\ See script in A295193 for comments.
    GraphsByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([x^0,1])));
      my(acc(p,v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r,p,i,q,v,e) = if(e<=limit && poldegree(q)<=limit, if(i<0, if(ok(x^e+q, r), acc(x^e+q, v)), my(t=polcoeff(p,i)); for(k=0,t,self()(r,p,i-1,(t-k+x*k)*x^i+q,binomial(t,k)*v,e+k)))));
      for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i,1]); recurse(n-k, p, poldegree(p), 0, src[i,2], 0))); Mat(M);
    }
    Row(n)={my(M=GraphsByDegreeSeq(n, n\2, (p,r)->poldegree(p)-valuation(p,x) <= r + 1), v=vector(n+1)); for(i=1, matsize(M)[1], my(p=M[i,1], d=poldegree(p)); v[1+d]+=M[i,2]; if(pollead(p)==n, v[2+d]+=M[i,2])); for(i=1, #v\2, v[#v+1-i]=v[i]); v}
    for(n=0, 8, print(Row(n))) \\ Andrew Howroyd, Mar 14 2020

Formula

T(n,k) = T(n,n-k).

A333165 Number of non-isomorphic 2n X 2n symmetric matrices with entries in {+1, -1} and all rows and columns summing to zero.

Original entry on oeis.org

1, 1, 2, 5, 66, 7937, 10211144, 133506398361, 18551599312980440, 28652629505982770906471, 510824181488832447063505273252
Offset: 0

Views

Author

Andrew Howroyd, Mar 11 2020

Keywords

Comments

a(n) is the number of non-isomorphic 2n X 2n symmetric binary matrices with n ones in every row and column.

Examples

			The a(1) = 1 matrix is:
  [+ -]
  [- +]
The a(2) = 2 matrices are:
  [+ + - -]   [+ + - -]
  [+ + - -]   [+ - + -]
  [- - + +]   [- + - +]
  [- - + +]   [- - + +]
		

Crossrefs

Central coefficients of A333159.

Formula

a(n) = A333159(2*n, n).

A333166 Number of n-regular graphs on 2n unlabeled vertices with half-edges.

Original entry on oeis.org

1, 2, 3, 12, 118, 9638, 10622074, 135037240786, 18621890255342234, 28688490385422625653266, 511030957184968000138445253202
Offset: 0

Views

Author

Andrew Howroyd, Mar 12 2020

Keywords

Comments

A half-edge is like a loop except it only adds 1 to the degree of its vertex.
a(n) is the number of non-isomorphic 2n X 2n symmetric matrices with entries in {+1, -1} and all rows and columns summing to zero where isomorphism is up to simultaneous permutation of rows and columns. The case where rows and columns can be permuted independently is covered by A333165.

Examples

			The a(1) = 1 matrix is:
  [+ -]
  [- +]
.
The a(2) = 2 matrices are:
  [+ + - -]   [- - + +]   [+ + - -]
  [+ + - -]   [- - + +]   [+ - + -]
  [- - + +]   [+ + - -]   [- + - +]
  [- - + +]   [+ + - -]   [- - + +]
		

Crossrefs

Central coefficients of A333161.

Formula

a(n) = A333161(2*n, n).

A213793 Number of n X n 0..1 symmetric arrays with every row summing to floor(n/2).

Original entry on oeis.org

1, 1, 2, 4, 18, 112, 1760, 35150, 1944530, 133948836, 26615510712, 6549149852112, 4762109992158288, 4274712091685443584, 11528251571501588791296, 38295413179145036856212700, 386860001875783390762182911250, 4805622573099374975572752075805000
Offset: 0

Views

Author

R. H. Hardin, Jun 20 2012

Keywords

Examples

			Some solutions for n=4
..1..1..0..0....0..0..1..1....0..1..1..0....1..0..1..0....0..1..1..0
..1..0..1..0....0..0..1..1....1..0..0..1....0..0..1..1....1..1..0..0
..0..1..0..1....1..1..0..0....1..0..0..1....1..1..0..0....1..0..0..1
..0..0..1..1....1..1..0..0....0..1..1..0....0..1..0..1....0..0..1..1
		

Crossrefs

Column 1 of A213800.
Cf. A333164.

Formula

a(2*n) = A333164(n). - Andrew Howroyd, Apr 08 2020

Extensions

a(0)=1 prepended and terms a(13) and beyond from Andrew Howroyd, Apr 08 2020
Showing 1-4 of 4 results.