cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A335963 Decimal expansion of Product_{p prime, p == 1 (mod 4)} (1 - 2/p^2).

Original entry on oeis.org

8, 9, 4, 8, 4, 1, 2, 2, 4, 5, 6, 2, 4, 8, 8, 1, 7, 0, 7, 2, 5, 6, 6, 1, 5, 0, 6, 9, 0, 8, 4, 3, 7, 3, 2, 1, 9, 8, 7, 5, 4, 7, 8, 0, 8, 9, 2, 0, 7, 1, 8, 9, 7, 2, 6, 0, 1, 7, 9, 9, 4, 2, 7, 6, 1, 6, 5, 6, 3, 8, 9, 2, 2, 1, 2, 0, 9, 1, 5, 5, 0, 2, 8, 8, 5, 9, 4, 2, 9, 1, 0, 5, 3, 9, 5, 8, 9, 1, 0, 8, 0, 0, 3, 3, 2, 2
Offset: 0

Views

Author

Amiram Eldar, Jul 01 2020

Keywords

Comments

The asymptotic density of the numbers k such that k^2+1 is squarefree (A049533) (Estermann, 1931).
The constant c in Sum_{k=0..n} phi(k^2 + 1) = A333170(n) ~ (1/4)*c*n^3 (Finch, 2018).
The constant c in Sum_{k=0..n} phi(k^2 + 1)/(k^2 + 1) = (3/4)*c*n + O(log(n)^2) (Postnikov, 1988).

Examples

			0.89484122456248817072566150690843732198754780892071...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 101.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 166.
  • A. G. Postnikov, Introduction to Analytic Number Theory, Amer. Math. Soc., 1988, pp. 192-195.

Crossrefs

Programs

  • Maple
    Digits := 150;
    with(NumberTheory);
    DirichletBeta := proc(s) (Zeta(0, s, 1/4) - Zeta(0, s, 3/4))/4^s; end proc;
    alfa := proc(s) DirichletBeta(s)*Zeta(s)/((1 + 1/2^s)*Zeta(2*s)); end proc;
    beta := proc(s) (1 - 1/2^s)*Zeta(s)/DirichletBeta(s); end proc;
    pzetamod41 := proc(s, terms) 1/2*Sum(Moebius(2*j + 1)*log(alfa((2*j + 1)*s))/(2*j + 1), j = 0..terms); end proc;
    evalf(exp(-Sum(2^t*pzetamod41(2*t, 50)/t, t = 1..200))); # Vaclav Kotesovec, Jan 13 2021
  • Mathematica
    f[p_] := If[Mod[p, 4] == 1, 1 - 2/p^2, 1]; RealDigits[N[Product[f[Prime[i]], {i, 1, 10^6}], 10], 10, 8][[1]] (* for calculating only the first few terms *)
    (* -------------------------------------------------------------------------- *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z2[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = 2^w * P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z2[4, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
  • PARI
    f(lim,poly=1-'x-'x^2/2)=prodeulerrat(subst(poly,'x,1/'x^2))*prodeuler(p=2,lim, my(pm2=1./p^2); if(p%4==1,1.-2*pm2,1.)/subst(poly,'x,pm2)) \\ Gets 14 digits at lim=1e9; Charles R Greathouse IV, Aug 10 2022

Formula

Equals 2*A065474/A340617.

Extensions

More digits (from the paper by R. J. Mathar) added by Jon E. Schoenfield, Jan 12 2021
More digits from Vaclav Kotesovec, Jan 13 2021

A333167 a(n) = r_2(n^2 + 1), where r_2(k) is the number of ways of writing k as a sum of 2 squares (A004018).

Original entry on oeis.org

4, 4, 8, 8, 8, 8, 8, 12, 16, 8, 8, 8, 16, 16, 8, 8, 8, 16, 24, 8, 8, 16, 16, 16, 8, 8, 8, 16, 16, 8, 16, 16, 24, 16, 16, 8, 8, 16, 24, 8, 8, 12, 16, 24, 16, 8, 16, 32, 16, 8, 16, 8, 16, 16, 8, 16, 8, 32, 16, 8, 16, 8, 16, 16, 16, 8, 8, 16, 32, 8, 24, 8, 32, 32
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = r_2(0^2 + 1) = r_2(1) = A004018(1) = 4.
		

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.

Crossrefs

Programs

  • Mathematica
    Table[SquaresR[2, k^2 + 1], {k, 0, 100}]

Formula

a(n) = A004018(A002522(n)).

A333170 a(n) = Sum_{k=0..n} phi(k^2 + 1), where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 6, 10, 26, 38, 74, 94, 142, 182, 282, 342, 454, 518, 714, 826, 1082, 1194, 1434, 1614, 2014, 2206, 2590, 2798, 3374, 3686, 4362, 4650, 5274, 5694, 6526, 6958, 7758, 8190, 9246, 9858, 11154, 11698, 12786, 13546, 15146, 15958, 17366, 18086, 19862, 20874
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = phi(0^2 + 1) = phi(1) = 1.
a(1) = phi(0^2 + 1) + phi(1^2 + 1) = phi(1) + phi(2) = 1 + 1 = 2.
		

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.

Crossrefs

Partial sums of A333169.

Programs

  • Mathematica
    Accumulate @ Table[EulerPhi[k^2 + 1], {k, 0, 100}]
  • PARI
    a(n) = sum(k=0, n, eulerphi(k^2+1)); \\ Michel Marcus, Mar 10 2020

Formula

a(n) ~ (H/4) * n^3, where H = Product_{p prime, p == 1 (mod 4)} (1 - 2/p^2) = 0.8948412245... (A335963).

A333173 a(n) = r_4(n^2 + 1), where r_4(k) is the number of ways of writing k as a sum of 4 squares (A000118).

Original entry on oeis.org

8, 24, 48, 144, 144, 336, 304, 744, 672, 1008, 816, 1488, 1440, 2592, 1584, 2736, 2064, 4320, 3472, 4368, 3216, 6048, 4704, 7776, 4624, 7536, 5424, 10656, 7584, 10128, 7776, 12768, 10416, 15840, 10080, 14736, 10384, 19872, 14736, 18288, 12816, 20904, 16992, 28272
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = r_4(0^2 + 1) = r_4(1) = A000118(1) = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[SquaresR[4, k^2 + 1], {k, 0, 100}]

Formula

a(n) = A000118(A002522(n)).
Showing 1-4 of 4 results.