A333170 a(n) = Sum_{k=0..n} phi(k^2 + 1), where phi is the Euler totient function (A000010).
1, 2, 6, 10, 26, 38, 74, 94, 142, 182, 282, 342, 454, 518, 714, 826, 1082, 1194, 1434, 1614, 2014, 2206, 2590, 2798, 3374, 3686, 4362, 4650, 5274, 5694, 6526, 6958, 7758, 8190, 9246, 9858, 11154, 11698, 12786, 13546, 15146, 15958, 17366, 18086, 19862, 20874
Offset: 0
Keywords
Examples
a(0) = phi(0^2 + 1) = phi(1) = 1. a(1) = phi(0^2 + 1) + phi(1^2 + 1) = phi(1) + phi(2) = 1 + 1 = 2.
References
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
Accumulate @ Table[EulerPhi[k^2 + 1], {k, 0, 100}]
-
PARI
a(n) = sum(k=0, n, eulerphi(k^2+1)); \\ Michel Marcus, Mar 10 2020
Formula
a(n) ~ (H/4) * n^3, where H = Product_{p prime, p == 1 (mod 4)} (1 - 2/p^2) = 0.8948412245... (A335963).