cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306734 Expansion of Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 8, 9, 8, 8, 9, 9, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 14, 15, 15, 15, 15, 15, 15, 16
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[x^(k^2) Product[(1 + x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*x^(2*k - 1)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Mar 10 2020 *)

Formula

a(n) ~ c * A333198^sqrt(n) / sqrt(n), where c = 0.424889520435345887204307524... = sqrt((23 + (10051/2 - (1173*sqrt(69))/2)^(1/3) + ((23/2)*(437 + 51*sqrt(69)))^(1/3))/69)/2, c = sqrt(s)/2, where s is the real root of the equation -1 + 6*s - 23*s^2 + 23*s^3 = 0. - Vaclav Kotesovec, Mar 11 2020
Limit_{n->infinity} a(n) / A333179(n) = A060006 = (1/2 + sqrt(23/3)/6)^(1/3) + (1/2 - sqrt(23/3)/6)^(1/3) = 1.32471795724474602596090885... - Vaclav Kotesovec, Mar 11 2020

A333198 Decimal expansion of a constant related to the asymptotics of A306734 and A333179.

Original entry on oeis.org

1, 8, 6, 4, 2, 9, 5, 2, 5, 4, 3, 5, 8, 4, 4, 0, 6, 5, 9, 2, 4, 7, 4, 7, 5, 9, 9, 8, 5, 6, 1, 1, 2, 2, 4, 6, 8, 7, 7, 2, 9, 5, 2, 4, 4, 5, 0, 7, 3, 6, 8, 4, 2, 1, 5, 7, 4, 4, 0, 3, 3, 6, 0, 1, 5, 8, 1, 4, 1, 1, 9, 7, 8, 0, 4, 6, 0, 8, 4, 7, 9, 1, 1, 3, 6, 4, 7, 9, 6, 6, 0, 9, 8, 3, 6, 9, 6, 7, 6, 3, 5, 1, 8, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 11 2020

Keywords

Examples

			1.86429525435844065924747599856112246877295244507368421574403...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^Sqrt[4*Log[r]^2/3 + 4*PolyLog[2, 1-r] - Pi^2/3] /. r -> (2 - 5*(2/(-11 + 3*Sqrt[69]))^(1/3) + ((-11 + 3*Sqrt[69])/2)^(1/3))/3, 10, 120][[1]] (* Vaclav Kotesovec, Oct 07 2024 *)

Formula

Equals limit_{n->infinity} A306734(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A333179(n)^(1/sqrt(n)).
Equals exp(sqrt(4*log(r)^2/3 + 4*polylog(2, 1-r) - Pi^2/3)), where r = 1 - A357471 = 0.4301597090019467340886... is the real root of the equation r^2 = (1-r)^3. - Vaclav Kotesovec, Oct 07 2024

Extensions

More digits from Vaclav Kotesovec, Oct 07 2024

A333181 G.f.: Sum_{k>=1} (k * x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 2, 2, 2, 2, 0, 0, 3, 3, 3, 6, 3, 3, 3, 0, 4, 4, 4, 8, 8, 8, 8, 8, 4, 4, 9, 5, 5, 10, 10, 15, 15, 15, 15, 15, 15, 10, 16, 11, 11, 17, 12, 18, 24, 24, 24, 30, 30, 30, 30, 24, 31, 31, 25, 26, 26, 27, 34, 41, 35, 42, 49, 49, 56, 56, 56, 56, 64
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[n*x^(n*(n+1))*Product[1+x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 0; Do[p = Expand[p*(1 + x^k)*x^(2*k)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += k*p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ c * A333198^sqrt(n), where c = 0.2895947615240435716456...
Limit_{n->infinity} A333180(n) / a(n) = A060006 = (1/2 + sqrt(23/3)/6)^(1/3) + (1/2 - sqrt(23/3)/6)^(1/3) = 1.32471795724474602596090885...
Showing 1-3 of 3 results.