A333217 Numbers k such that the k-th composition in standard order covers an initial interval of positive integers.
0, 1, 3, 5, 6, 7, 11, 13, 14, 15, 21, 22, 23, 26, 27, 29, 30, 31, 37, 38, 41, 43, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 59, 61, 62, 63, 75, 77, 78, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 101, 102, 105, 106, 107, 108, 109, 110, 111, 114, 116, 117, 118
Offset: 1
Keywords
Examples
The sequence of terms together with the corresponding compositions begins: 0: () 37: (3,2,1) 75: (3,2,1,1) 1: (1) 38: (3,1,2) 77: (3,1,2,1) 3: (1,1) 41: (2,3,1) 78: (3,1,1,2) 5: (2,1) 43: (2,2,1,1) 83: (2,3,1,1) 6: (1,2) 44: (2,1,3) 85: (2,2,2,1) 7: (1,1,1) 45: (2,1,2,1) 86: (2,2,1,2) 11: (2,1,1) 46: (2,1,1,2) 87: (2,2,1,1,1) 13: (1,2,1) 47: (2,1,1,1,1) 89: (2,1,3,1) 14: (1,1,2) 50: (1,3,2) 90: (2,1,2,2) 15: (1,1,1,1) 52: (1,2,3) 91: (2,1,2,1,1) 21: (2,2,1) 53: (1,2,2,1) 92: (2,1,1,3) 22: (2,1,2) 54: (1,2,1,2) 93: (2,1,1,2,1) 23: (2,1,1,1) 55: (1,2,1,1,1) 94: (2,1,1,1,2) 26: (1,2,2) 58: (1,1,2,2) 95: (2,1,1,1,1,1) 27: (1,2,1,1) 59: (1,1,2,1,1) 101: (1,3,2,1) 29: (1,1,2,1) 61: (1,1,1,2,1) 102: (1,3,1,2) 30: (1,1,1,2) 62: (1,1,1,1,2) 105: (1,2,3,1) 31: (1,1,1,1,1) 63: (1,1,1,1,1,1) 106: (1,2,2,2)
Links
- Robert Price, Table of n, a(n) for n = 1..1008
Crossrefs
Sequences covering an initial interval are counted by A000670.
Composition in standard order are A066099.
The case of strictly increasing initial intervals is A164894.
The case of strictly decreasing initial intervals is A246534.
The case of permutations is A333218.
The weakly increasing version is A333379.
The weakly decreasing version is A333380.
Programs
-
Mathematica
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,100],normQ[stc[#]]&]
Comments