A333245 Primes p such that the order of 2 mod p is less than the square root of p.
31, 127, 257, 683, 1103, 1801, 2089, 2113, 2351, 2731, 3191, 4051, 4513, 5419, 6361, 8191, 9719, 11119, 11447, 13367, 14449, 14951, 20231, 20857, 23279, 23311, 26317, 29191, 30269, 32377, 37171, 38737, 39551, 43441, 43691, 49477, 54001, 55633, 55871, 59393
Offset: 1
Keywords
Examples
The order of 2 mod 31 is 5, and sqrt(31) = 5.56776436283..., which is more than 5, so 31 is in the sequence. The order of 2 mod 37 is 36, and sqrt(37) = 6.08276253..., which is significantly less than 36, so 37 is not in the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Julia
using Nemo function isA333245(n) ! isprime(n) && return false s, m, N = 0, 1, n r = isqrt(n) while true k = N + m v = valuation(k, 2) s += v s > r && return false m = k >> v m == 1 && break end return true end print([n for n in 3:2:60000 if isA333245(n)]) # Peter Luschny, Mar 16 2020
-
Maple
q:= p-> is(numtheory[order](2, p)^2
-
Mathematica
Select[Prime[Range[6000]], MultiplicativeOrder[2, #] < Sqrt[#] &] (* Amiram Eldar, Mar 16 2020 *)
-
PARI
list(lim)=my(v=List(),t,p,o); forfactored(P=30,lim\1, if(vecsum(P[2][,2])==1, t=znorder(Mod(2,p=P[1]),o); if(t^2