A368481 The degree of polynomials related to Somos-5 sequences. Also for n > 4 the degree of the (n-4)-th involution in a family of involutions in the Cremona group of rank 4 defined by a Somos-5 sequence.
0, 0, 0, 0, 0, 2, 3, 4, 6, 9, 11, 14, 18, 22, 25, 30, 35, 40, 45, 52, 58, 64, 71, 79, 86, 94, 103, 112, 120, 130, 140, 150, 160, 172, 183, 194, 206, 219, 231, 244, 258, 272, 285, 300, 315, 330, 345, 362, 378, 394, 411, 429, 446, 464, 483, 502, 520, 540, 560, 580, 600, 622, 643, 664, 686, 709
Offset: 0
Keywords
Links
- S. Fomin and A. Zelevinsky, The Laurent phenomenon, arXiv:math/0104241 [math.CO], 2001.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,0,0,1,-1,-1,1).
Programs
-
Maxima
N : 5$ Len : 15$ /* Somos-N, N >= 2, Len = length of the calculated lists */ NofRT : floor (N / 2)$ /* number of terms in a Somos-N recurrence */ S : makelist (0, Len)$ G : makelist (0, Len)$ DegG : makelist (0, Len)$ /* G, the numerator of s() */ for i: 1 thru N do ( S[i] : s[i - 1], G[i] : 1, DegG[i] : 0 )$ for i: N + 1 thru Len do ( SS : 0, for j : 1 thru NofRT do ( SS : SS + S[i - j] * S[i - N + j] ), S[i] : factor (SS / S[i - N]), G[i] : num (S[i]), /* for N > 3 G is a homogenous polynomial, take the first monomial to determine the degree */ Mon : G[i], if N > 3 then ( Mon : args (Mon)[1] ), DegG[i] : 0, for j : 0 thru N - 1 do ( DegG[i] : DegG[i] + hipow (Mon, s[j]) ) )$ args (DegG);
Formula
a(n) = 1 + e(n-4) + e(n-3) + e(n-2) + e(n-1) + e(n), where e(n) = A333251(n) is the exponent of one of the initial values in the denominator of s(n). - Andrey Zabolotskiy Jan 09 2024
The growth rate is quadratic, a(n) = (5/28) * n^2 + O(n).
G.f.: x^5 * (2+x-x^2+x^3+2*x^4) / ( (1-x)^3 * (x+1) * (x^6+x^5+x^4+x^3+x^2+x+1) ). - Joerg Arndt, Jan 14 2024
Comments