A368483 The degree of polynomials related to Somos-7 sequences. Also for n > 6 the degree of the (n-6)-th involution in a family of involutions in the Cremona group of rank 6 defined by a Somos-7 sequence.
0, 0, 0, 0, 0, 0, 0, 2, 3, 4, 5, 7, 9, 12, 14, 16, 19, 23, 26, 30, 33, 37, 42, 47, 51, 56, 61, 67, 73, 79, 84, 91, 98, 105, 112, 119, 126, 135, 143, 151, 159, 168, 177, 187, 196, 205, 215, 226, 236, 247, 257, 268, 280, 292, 303, 315, 327, 340, 353, 366
Offset: 0
Links
- S. Fomin and A. Zelevinsky, The Laurent phenomenon, arXiv:math/0104241 [math.CO], 2001.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,0,0,-1,-1,0,1).
Programs
-
Maxima
N : 7$ Len : 11$ /* Somos-N, N >= 2, Len = length of the calculated lists */ NofRT : floor (N / 2)$ /* number of terms in a Somos-N recurrence */ S : makelist (0, Len)$ G : makelist (0, Len)$ DegG : makelist (0, Len)$ /* G, the numerator of s() */ for i: 1 thru N do ( S[i] : s[i - 1], G[i] : 1, DegG[i] : 0 )$ for i: N + 1 thru Len do ( SS : 0, for j : 1 thru NofRT do ( SS : SS + S[i - j] * S[i - N + j] ), S[i] : factor (SS / S[i - N]), G[i] : num (S[i]), /* for N > 3 G is a homogenous polynomial, take the first monomial to determine the degree */ Mon : G[i], if N > 3 then ( Mon : args (Mon)[1] ), DegG[i] : 0, for j : 0 thru N - 1 do ( DegG[i] : DegG[i] + hipow (Mon, s[j]) ) )$ DegG;
Formula
a(n) = 1 + e(n-6) + e(n-5) + e(n-4) + e(n-3) + e(n-2) + e(n-1) + e(n), where e(n) = A369611(n), the tropical version of Somos-7, is the exponent of one of the initial values in the denominator of s(n).
The growth rate is quadratic, a(n) = (7/60) * n^2 + O(n).
Comments