A333315 a(n) = Sum_{k=1..n} phi(prime(k)-1), where phi is the Euler totient function (A000005).
1, 2, 4, 6, 10, 14, 22, 28, 38, 50, 58, 70, 86, 98, 120, 144, 172, 188, 208, 232, 256, 280, 320, 360, 392, 432, 464, 516, 552, 600, 636, 684, 748, 792, 864, 904, 952, 1006, 1088, 1172, 1260, 1308, 1380, 1444, 1528, 1588, 1636, 1708, 1820, 1892, 2004, 2100, 2164
Offset: 1
Keywords
References
- József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 30.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- S. S. Pillai, On the sum function connected with primitive roots, Proceedings of the Indian Academy of Sciences - Section A, Vol. 13 (1941), pp. 526-529, alternative link.
- Eric Weisstein's World of Mathematics, Logarithmic Integral.
- Wikipedia, Logarithmic integral function.
Programs
-
Mathematica
Accumulate @ EulerPhi[Select[Range[300], PrimeQ] - 1]
-
PARI
a(n) = sum(k=1, n, eulerphi(prime(k)-1)); \\ Michel Marcus, Mar 15 2020