cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333315 a(n) = Sum_{k=1..n} phi(prime(k)-1), where phi is the Euler totient function (A000005).

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 22, 28, 38, 50, 58, 70, 86, 98, 120, 144, 172, 188, 208, 232, 256, 280, 320, 360, 392, 432, 464, 516, 552, 600, 636, 684, 748, 792, 864, 904, 952, 1006, 1088, 1172, 1260, 1308, 1380, 1444, 1528, 1588, 1636, 1708, 1820, 1892, 2004, 2100, 2164
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2020

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 30.

Crossrefs

Partial sums of A008330.

Programs

  • Mathematica
    Accumulate @ EulerPhi[Select[Range[300], PrimeQ] - 1]
  • PARI
    a(n) = sum(k=1, n, eulerphi(prime(k)-1)); \\ Michel Marcus, Mar 15 2020

Formula

a(n) = Sum_{k=1..n} A008330(k).
a(n) ~ A * Li(n^2), where A is Artin's constant (A005596), and Li(x) is the logarithmic integral function.