A333319 a(n) is the number of subsets of {1..n} that contain exactly 3 odd and 1 even numbers.
0, 0, 0, 0, 0, 2, 3, 12, 16, 40, 50, 100, 120, 210, 245, 392, 448, 672, 756, 1080, 1200, 1650, 1815, 2420, 2640, 3432, 3718, 4732, 5096, 6370, 6825, 8400, 8960, 10880, 11560, 13872, 14688, 17442, 18411, 21660, 22800, 26600, 27930, 32340, 33880, 38962, 40733, 46552
Offset: 0
Examples
a(7)=12 and the 12 subsets are {1,2,3,5}, {1,2,3,7}, {1,2,5,7}, {1,3,4,5}, {1,3,4,7}, {1,3,5,6}, {1,3,6,7}, {1,4,5,7}, {1,5,6,7}, {2,3,5,7}, {3,4,5,7}, {3,5,6,7}.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Crossrefs
Cf. A330299.
Programs
-
Mathematica
Array[Binomial[Ceiling[#], 3] Binomial[Floor[#], 1] &[#/2] &, 48, 0] (* Michael De Vlieger, Mar 14 2020 *)
-
PARI
concat([0,0,0,0,0], Vec(x^5*(2 + x + x^2) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Mar 15 2020
Formula
a(n) = binomial(ceiling(n/2),3) * binomial(floor(n/2), 1).
From Colin Barker, Mar 15 2020: (Start)
G.f.: x^5*(2 + x + x^2) / ((1 - x)^5*(1 + x)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>8.
(End)
Comments