A333320 a(n) is the number of subsets of {1..n} that contain exactly 4 odd and 1 even numbers.
0, 0, 0, 0, 0, 0, 0, 3, 4, 20, 25, 75, 90, 210, 245, 490, 560, 1008, 1134, 1890, 2100, 3300, 3630, 5445, 5940, 8580, 9295, 13013, 14014, 19110, 20475, 27300, 29120, 38080, 40460, 52020, 55080, 69768, 73644, 92055, 96900, 119700, 125685, 153615, 160930, 194810, 203665
Offset: 0
Examples
a(8)=4 and the 4 subsets are {1,2,3,5,7}, {1,3,4,5,7}, {1,3,5,6,7}, {1,3,5,7,8}.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
Crossrefs
Cf. A333321.
Programs
-
Mathematica
Array[Binomial[Ceiling[#], 4] Binomial[Floor[#], 1] &[#/2] &, 47, 0] (* Michael De Vlieger, Mar 14 2020 *)
-
PARI
concat([0,0,0,0,0,0,0], Vec(x^7*(3 + x + x^2) / ((1 - x)^6*(1 + x)^5) + O(x^50))) \\ Colin Barker, Mar 17 2020
Formula
a(n) = binomial(ceiling(n/2),4) * floor(n/2).
From Colin Barker, Mar 17 2020: (Start)
G.f.: x^7*(3 + x + x^2) / ((1 - x)^6*(1 + x)^5).
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11) for n>10.
(End)
Comments