cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333320 a(n) is the number of subsets of {1..n} that contain exactly 4 odd and 1 even numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 4, 20, 25, 75, 90, 210, 245, 490, 560, 1008, 1134, 1890, 2100, 3300, 3630, 5445, 5940, 8580, 9295, 13013, 14014, 19110, 20475, 27300, 29120, 38080, 40460, 52020, 55080, 69768, 73644, 92055, 96900, 119700, 125685, 153615, 160930, 194810, 203665
Offset: 0

Views

Author

Enrique Navarrete, Mar 14 2020

Keywords

Comments

The general formula for the number of subsets of {1..n} that contain exactly k odd and j even numbers is binomial(ceiling(n/2), k) * binomial(floor(n/2), j).

Examples

			a(8)=4 and the 4 subsets are {1,2,3,5,7}, {1,3,4,5,7}, {1,3,5,6,7}, {1,3,5,7,8}.
		

Crossrefs

Cf. A333321.

Programs

  • Mathematica
    Array[Binomial[Ceiling[#], 4] Binomial[Floor[#], 1] &[#/2] &, 47, 0] (* Michael De Vlieger, Mar 14 2020 *)
  • PARI
    concat([0,0,0,0,0,0,0], Vec(x^7*(3 + x + x^2) / ((1 - x)^6*(1 + x)^5) + O(x^50))) \\ Colin Barker, Mar 17 2020

Formula

a(n) = binomial(ceiling(n/2),4) * floor(n/2).
From Colin Barker, Mar 17 2020: (Start)
G.f.: x^7*(3 + x + x^2) / ((1 - x)^6*(1 + x)^5).
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11) for n>10.
(End)