A333329 Number of winnable configurations in Lights Out game (played on a digraph) summed over every labeled digraph on n nodes.
1, 3, 43, 2619, 654811, 662827803, 2699483026843, 44102911693372059, 2886238576935227688091, 756075355087132847491422363, 792522435884210281153847457333403, 3323493099535510709729189614466101940379, 55754039618636998102358059592995073452269940891
Offset: 0
Keywords
Links
- A. Giffen and D. Parker, On Generalizing the Lights Out Game and a Generalization of Parity Domination, 2009.
- L. Keough and D. Parker, An Extremal Problem for the Neighborhood Lights Out Game, arXiv:1908.03649 [math.CO], 2019.
- Eric Weisstein's World of Mathematics, Lights Out Puzzle
Programs
-
Mathematica
Table[Table[2^k*Product[(2^n - 2^i)^2 /(2^k - 2^i), {i, 0, k - 1}], {k, 0, n}] // Total, {n, 0, 12}]
Formula
a(n) = Sum_{k=0..n} A286331(n,k)*2^k.
a(n) ~ c * 2^(n*(n+1)), where c = 0.610321518048266425924048782090628564983520109965690835927574616905934... - Vaclav Kotesovec, Apr 07 2020
Comments