cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333333 Irregular triangle: T(n,k) gives the number of k-polysticks on edges of the n-cube up to isometries of the n-cube, with 0 <= k <= A001787(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 9, 14, 19, 16, 9, 4, 1, 1, 1, 1, 1, 3, 7, 21, 72, 269, 994, 3615, 12337, 38603, 107720, 259990, 526314, 865217, 1139344, 1225762, 1109138, 857376, 574284, 333484, 169023, 73994, 28222, 9138, 2595, 604, 140, 24, 6, 1, 1
Offset: 1

Views

Author

Peter Kagey, Mar 15 2020

Keywords

Comments

This sequence counts edge-induced connected subgraphs of the n-dimensional hypercube graph, up to automorphisms of the hypercube; A369605 counts vertex-induced such graphs. - Pontus von Brömssen, May 12 2025
Row 3 gives the number of polyforms with n cells on the faces of a rhombic dodecahedron up to rotation and reflection. - Peter Kagey, May 19 2025

Examples

			Table begins:
n\k| 0  1  2  3  4   5   6    7    8     9     10     11      12 ...
---+----------------------------------------------------------------
  1| 1, 1;
  2| 1, 1, 1, 1, 1;
  3| 1, 1, 1, 3, 4,  9, 14,  19,  16,    9,     4,     1,      1;
  4| 1, 1, 1, 3, 7, 21, 72, 269, 994, 3615, 12337, 38603, 107720, ...
		

Crossrefs

Formula

T(n,k) = T(n-1,k) for k < n.
T(n,0) = T(n,1) = T(n,2) = T(n,A001787(n)-1) = T(n,A001787(n)) = 1.
A222192(n) = Sum_{k=0..n*2^(n-1)} T(n,k) - Sum_{k=0..(n-1)*2^(n-2)} T(n-1,k) for n >= 2. - Peter Kagey, Jun 19 2023

Extensions

a(31)-a(40) from Pontus von Brömssen, May 12 2025
a(41)-a(53) from Pontus von Brömssen, May 30 2025