A333333 Irregular triangle: T(n,k) gives the number of k-polysticks on edges of the n-cube up to isometries of the n-cube, with 0 <= k <= A001787(n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 9, 14, 19, 16, 9, 4, 1, 1, 1, 1, 1, 3, 7, 21, 72, 269, 994, 3615, 12337, 38603, 107720, 259990, 526314, 865217, 1139344, 1225762, 1109138, 857376, 574284, 333484, 169023, 73994, 28222, 9138, 2595, 604, 140, 24, 6, 1, 1
Offset: 1
Examples
Table begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ... ---+---------------------------------------------------------------- 1| 1, 1; 2| 1, 1, 1, 1, 1; 3| 1, 1, 1, 3, 4, 9, 14, 19, 16, 9, 4, 1, 1; 4| 1, 1, 1, 3, 7, 21, 72, 269, 994, 3615, 12337, 38603, 107720, ...
Links
- Code Golf Stack Exchange, Counting polyominoes on (hyper-)cubes
- Peter Kagey, Examples of T(3,3) through T(3,8).
- Wikipedia, Hypercube
- Wikipedia, Polystick
Formula
T(n,k) = T(n-1,k) for k < n.
A222192(n) = Sum_{k=0..n*2^(n-1)} T(n,k) - Sum_{k=0..(n-1)*2^(n-2)} T(n-1,k) for n >= 2. - Peter Kagey, Jun 19 2023
Extensions
a(31)-a(40) from Pontus von Brömssen, May 12 2025
a(41)-a(53) from Pontus von Brömssen, May 30 2025
Comments