cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333345 Decimal expansion of (11 + sqrt(85))/2.

Original entry on oeis.org

1, 0, 1, 0, 9, 7, 7, 2, 2, 2, 8, 6, 4, 6, 4, 4, 3, 6, 5, 5, 0, 0, 1, 1, 3, 7, 1, 4, 0, 8, 8, 1, 3, 9, 6, 5, 7, 8, 6, 2, 3, 4, 0, 2, 5, 2, 4, 3, 6, 1, 2, 3, 2, 0, 0, 4, 0, 0, 3, 8, 7, 6, 1, 0, 2, 7, 2, 1, 3, 3, 5, 5, 1, 3, 4, 0, 0, 9, 3, 7, 7, 3, 0, 3, 8, 3, 9, 4, 7, 0, 4, 5, 3, 9, 6, 6, 4, 0, 2, 8, 2, 4, 7, 0, 1, 6, 9, 9
Offset: 2

Views

Author

Kevin Ryde, Mar 15 2020

Keywords

Comments

This constant is Heuberger and Wagner's lambda. They consider the number of maximum matchings a tree of n vertices may have, and show that the largest number of maximum matchings (A333347) grows as O(lambda^(n/7)) (see A333346 for the 7th root). Lambda is the larger eigenvalue of matrix M = [8,3/5,3] which is raised to a power when counting matchings in a chain of "C" parts in the trees (their lemma 6.2).
Apart from the first digit the same as A176522. - R. J. Mathar, Apr 03 2020

Examples

			10.1097722286...
		

Crossrefs

Sequences growing as this power: A147841, A190872, A333344.
Cf. A333346 (seventh root), A176522.

Programs

  • Mathematica
    With[{$MaxExtraPrecision = 1000}, First@ RealDigits[(11 + Sqrt[85])/2, 10, 105]] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    (11 + sqrt(85))/2 \\ Michel Marcus, May 21 2020

Formula

Equals continued fraction [10; 9] = 10 + 1/(9 + 1/(9 + 1/(9 + 1/...))). - Peter Luschny, Mar 15 2020