cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333346 Decimal expansion of ((11 + sqrt(85))/2)^(1/7).

Original entry on oeis.org

1, 3, 9, 1, 6, 6, 4, 2, 8, 4, 1, 3, 9, 8, 8, 8, 5, 1, 0, 5, 7, 4, 5, 8, 1, 2, 3, 8, 4, 5, 7, 9, 3, 3, 0, 0, 9, 0, 0, 6, 0, 3, 5, 6, 6, 5, 7, 0, 0, 4, 5, 5, 0, 6, 8, 8, 8, 0, 1, 4, 7, 8, 4, 9, 7, 8, 4, 7, 4, 8, 0, 0, 4, 5, 3, 6, 8, 8, 9, 1, 0, 1, 1, 9, 9, 6, 9, 2, 2, 8, 1, 0, 2, 9, 6, 1, 6, 1, 4, 6, 8, 4, 7, 8, 3, 0, 5, 4
Offset: 1

Views

Author

Kevin Ryde, Mar 15 2020

Keywords

Comments

Heuberger and Wagner consider the number of maximum matchings a tree of n vertices may have. They show that the largest number of maximum matchings (A333347) grows as O(1.3916...^n) where the power is the constant here. This arises in their tree forms since each 7-vertex "C" part increases the number of matchings by a factor of matrix M=[8,3/5,3] (lemma 6.2). The larger eigenvalue of M is their lambda = A333345 and so a factor of lambda for each 7 vertices.

Examples

			1.39166428413...
		

Crossrefs

Sequence growing as this power: A333347.
Cf. A333345.

Programs

  • Mathematica
    RealDigits[((11 + Sqrt[85])/2)^(1/7), 10, 100][[1]] (* Amiram Eldar, Mar 15 2020 *)
  • PARI
    ((11 + sqrt(85))/2)^(1/7) \\ Stefano Spezia, Feb 09 2025