cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333353 Primes p whose order of primeness A078442(p) is prime.

Original entry on oeis.org

3, 5, 17, 31, 41, 59, 67, 83, 109, 157, 179, 191, 211, 241, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, 1031, 1087, 1153, 1171, 1201, 1217, 1297, 1409, 1433, 1447, 1471, 1499, 1523, 1597, 1621
Offset: 1

Views

Author

Alois P. Heinz, Mar 15 2020

Keywords

Examples

			31 is a term: 31 -> 11 -> 5 -> 3 -> 2 -> 1, five (a prime number of) steps "->" = pi = A000720.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          `if`(isprime(n), 1+b(numtheory[pi](n)), 0)
        end:
    a:= proc(n) option remember; local p;
          p:= `if`(n=1, 1, a(n-1));
          do p:= nextprime(p);
             if isprime(b(p)) then break fi
          od; p
        end:
    seq(a(n), n=1..55);
  • Mathematica
    b[n_] := b[n] = If[!PrimeQ[n], 0, 1+b[PrimePi[n]]];
    okQ[n_] := PrimeQ[n] && PrimeQ[b[n]];
    Select[Range[2000], okQ] (* Jean-François Alcover, May 30 2022 *)

Formula

{ p in primes : A078442(p) is prime }.
a(n) = prime(A333364(n)).