A333380 Numbers k such that the k-th composition in standard order is weakly decreasing and covers an initial interval of positive integers.
0, 1, 3, 5, 7, 11, 15, 21, 23, 31, 37, 43, 47, 63, 75, 85, 87, 95, 127, 149, 151, 171, 175, 191, 255, 293, 299, 303, 341, 343, 351, 383, 511, 549, 587, 597, 599, 607, 683, 687, 703, 767, 1023, 1099, 1173, 1175, 1195, 1199, 1215, 1365, 1367, 1375, 1407, 1535
Offset: 1
Keywords
Examples
The sequence of terms together with the corresponding compositions begins: 0: () 127: (1,1,1,1,1,1,1) 1: (1) 149: (3,2,2,1) 3: (1,1) 151: (3,2,1,1,1) 5: (2,1) 171: (2,2,2,1,1) 7: (1,1,1) 175: (2,2,1,1,1,1) 11: (2,1,1) 191: (2,1,1,1,1,1,1) 15: (1,1,1,1) 255: (1,1,1,1,1,1,1,1) 21: (2,2,1) 293: (3,3,2,1) 23: (2,1,1,1) 299: (3,2,2,1,1) 31: (1,1,1,1,1) 303: (3,2,1,1,1,1) 37: (3,2,1) 341: (2,2,2,2,1) 43: (2,2,1,1) 343: (2,2,2,1,1,1) 47: (2,1,1,1,1) 351: (2,2,1,1,1,1,1) 63: (1,1,1,1,1,1) 383: (2,1,1,1,1,1,1,1) 75: (3,2,1,1) 511: (1,1,1,1,1,1,1,1,1) 85: (2,2,2,1) 549: (4,3,2,1) 87: (2,2,1,1,1) 587: (3,3,2,1,1) 95: (2,1,1,1,1,1) 597: (3,2,2,2,1)
Crossrefs
Sequences covering an initial interval are counted by A000670.
Compositions in standard order are A066099.
Weakly decreasing runs are counted by A124765.
Removing the covering condition gives A114994.
Removing the ordering condition gives A333217.
The strictly decreasing case is A246534.
The unequal version is A333218.
The weakly increasing version is A333379.
Programs
-
Mathematica
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,1000],normQ[stc[#]]&&GreaterEqual@@stc[#]&]
Comments